Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics

Published 9 Mar 2023 in quant-ph, cs.IT, math-ph, math.IT, and math.MP | (2303.05524v3)

Abstract: We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel $\mathcal E$ mapping $\rho_1{\otimes n}$ into $\rho_2{\otimes R_nn}$ with an error $\epsilon_n$ (measured by trace distance) and $\sigma_1{\otimes n}$ into $\sigma_2{\otimes R_n n}$ exactly, for a large number $n$. We derive second-order asymptotic expressions for the optimal transformation rate $R_n$ in the small, moderate, and large deviation error regimes, as well as the zero-error regime, for an arbitrary pair $(\rho_1,\sigma_1)$ of initial states and a commuting pair $(\rho_2,\sigma_2)$ of final states. We also prove that for $\sigma_1$ and $\sigma_2$ given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (98)
  1. D. G. Altman, Practical statistics for medical research (CRC press, New York, 1990).
  2. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Inc., USA, 1993).
  3. E. Walter, L. Pronzato, and J. Norton, Identification of parametric models from experimental data, Vol. 1 (Springer, 1997).
  4. K. Weise and W. Woger, A Bayesian theory of measurement uncertainty, Meas. Sci. Technol. 4, 1 (1993).
  5. J. Taylor, Introduction to error analysis, the study of uncertainties in physical measurements (University Science Books, 1997).
  6. S. G. Rabinovich, Measurement errors and uncertainties: theory and practice (Springer Science & Business Media, 2006).
  7. J. M. Bernardo and A. F. Smith, Bayesian theory, Vol. 405 (John Wiley & Sons, 2009).
  8. R. Fisher, Statistical methods and scientific induction, J. R. Stat. Soc. B Stat. Methodol. 17, 69 (1955).
  9. E. L. Lehmann and J. P. Romano, Testing statistical hypotheses, Vol. 3 (Springer, 1986).
  10. J. Neyman and E. S. Pearson, IX. On the problem of the most efficient tests of statistical hypotheses, Philos. Trans. R. Soc. A 231, 289 (1933).
  11. A. Wald, Contributions to the theory of statistical estimation and testing hypotheses, Ann. Math. Stat. 10, 299 (1939).
  12. J. Von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, 1947).
  13. E. J. Johnson and J. W. Payne, Effort and accuracy in choice, Manag. Sci. 31, 395 (1985).
  14. R. B. Myerson, Game theory: analysis of conflict (Harvard University Press, 1997).
  15. T. M. Mitchell, Machine learning (McGraw-Hill New York, 1997).
  16. D. Blackwell, Equivalent comparisons of experiments, Ann. Math. Stat. 24, 265 (1953).
  17. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge University Press, 1952).
  18. C. E. Shannon, A note on a partial ordering for communication channels, Inf. Control 1, 390 (1958).
  19. C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231 (1969).
  20. P. Alberti and A. Uhlmann, A problem relating to positive linear maps on matrix algebras, Rep. Math. Phys. 18, 163 (1980).
  21. A. Holevo, Testing statistical hypotheses in quantum theory, Probab. Math. Stat. 3, 113 (1982).
  22. K. Matsumoto, Reverse test and characterization of quantum relative entropy, arXiv:1010:1030  (2010).
  23. F. Buscemi, Comparison of quantum statistical models: Equivalent conditions for sufficiency, Commun. Math. Phys. 310, 625 (2012a).
  24. Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58, 1593 (1987).
  25. M. G. Paris, Quantum estimation for quantum technology, Int. J. Quant. Inf. 7, 125 (2009).
  26. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nat. Photon. 5, 222 (2011).
  27. G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, J. Physics A 47, 424006 (2014).
  28. R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun. 3, 1063 (2012).
  29. F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, 2009).
  30. T. L. Hill, An introduction to statistical thermodynamics (Courier Corporation, 1986).
  31. J. A. Hertz, Quantum critical phenomena, in Basic Notions of Condensed Matter Physics (CRC Press, 2018) pp. 525–544.
  32. R. P. Feynman, Simulating physics with computers, in Feynman and computation (CRC Press, 2018) pp. 133–153.
  33. S. Aaronson, Quantum computing since Democritus (Cambridge University Press, 2013).
  34. E. Shmaya, Comparison of information structures and completely positive maps, J. Phys. A Math. Theor. 38, 9717 (2005).
  35. A. Chefles, The quantum Blackwell theorem and minimum error state discrimination, arXiv:0907.0866  (2009).
  36. R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966).
  37. H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83, 34 (1951).
  38. H. Stanley, Introduction to Phase Transitions and Critical Phenomena, International series of monographs on physics (Oxford University Press, 1987).
  39. K. Binder, Theory of first-order phase transitions, Rep. Prog. Phys. 50, 783 (1987).
  40. I. Prigogine and R. Defay, Chemical Thermodynamics (Wiley, 1962).
  41. J. W. Gibbs, Elementary principles in statistical mechanics (C. Scribner’s sons, 1902).
  42. M. Ledoux, The concentration of measure phenomenon (American Mathematical Society, 2001).
  43. C. T. Chubb, M. Tomamichel, and K. Korzekwa, Beyond the thermodynamic limit: finite-size corrections to state interconversion rates, Quantum 2, 108 (2018).
  44. M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013).
  45. M. Lostaglio, An introductory review of the resource theory approach to thermodynamics, Rep. Prog. Phys. 82, 114001 (2019).
  46. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 545 (2016).
  47. M. P. Müller, Correlating thermal machines and the second law at the nanoscale, Phys. Rev. X 8, 041051 (2018).
  48. P. Lipka-Bartosik and P. Skrzypczyk, All states are universal catalysts in quantum thermodynamics, Phys. Rev. X 11, 011061 (2021).
  49. X. Wang and M. M. Wilde, Resource theory of asymmetric distinguishability, Phys. Rev. Res. 1, 033170 (2019).
  50. J. M. Renes, Relative submajorization and its use in quantum resource theories, J. Math. Phys. 57, 122202 (2016).
  51. K. Matsumoto, An example of a quantum statistical model which cannot be mapped to a less informative one by any trace preserving positive map, arXiv:1409.5658  (2014).
  52. A. Jenčová, Comparison of quantum binary experiments, Rep. Math. Phys. 70, 237 (2012).
  53. D. Reeb, M. J. Kastoryano, and M. M. Wolf, Hilbert’s projective metric in quantum information theory, J. Math. Phys. 52, 082201 (2011).
  54. F. Buscemi, Comparison of quantum statistical models: equivalent conditions for sufficiency, Commun. Math. Phys. 310, 625 (2012b).
  55. A. Jenčová, Comparison of quantum channels and statistical experiments, in 2016 IEEE international symposium on information theory (ISIT) (IEEE, 2016) pp. 2249–2253.
  56. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  57. M. A. Nielsen, Conditions for a class of entanglement transformations, Phys. Rev. Lett. 83, 436 (1999).
  58. H.-K. Lo and S. Popescu, Concentrating entanglement by local actions: Beyond mean values, Phys. Rev. A 63, 022301 (2001).
  59. H. Umegaki, Conditional expectation in an operator algebra, Kodai Math. Sem. Rep. 14, 59 (1962).
  60. M. Tomamichel and M. Hayashi, A hierarchy of information quantities for finite block length analysis of quantum tasks, IEEE Trans. Inf. Theory 59, 7693 (2013a).
  61. K. Li, Second-order asymptotics for quantum hypothesis testing, Ann. Stat. 42, 171 (2014).
  62. A. Rényi, On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Vol. 4 (University of California Press, 1961) pp. 547–562.
  63. D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23, 57 (1986).
  64. K. M. R. Audenaert and N. Datta, α𝛼\alphaitalic_α-z𝑧zitalic_z-Rényi relative entropies, J. Math. Phys. 56, 022202 (2015).
  65. M. Tomamichel, Quantum Information Processing with Finite Resources — Mathematical Foundations (Springer International Publishing, 2016).
  66. M. M. Wilde, A. Winter, and D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy, Commun. Math. Phys. 331, 593 (2014).
  67. W. Kumagai and M. Hayashi, Second-order asymptotics of conversions of distributions and entangled states based on Rayleigh-normal probability distributions, IEEE Trans. Inf. Theory 63, 1829 (2016).
  68. C. T. Chubb, M. Tomamichel, and K. Korzekwa, Moderate deviation analysis of majorization-based resource interconversion, Phys. Rev. A 99, 032332 (2019).
  69. G. Gour, Role of quantum coherence in thermodynamics, PRX Quantum 3, 040323 (2022).
  70. F. Buscemi, D. Sutter, and M. Tomamichel, An information-theoretic treatment of quantum dichotomies, Quantum 3, 209 (2019).
  71. K. Li and Y. Yao, Operational interpretation of the sandwiched Rényi divergences of order 1/2 to 1 as strong converse exponents, arXiv:2209.00554  (2022).
  72. P. Lipka-Bartosik, P. Mazurek, and M. Horodecki, Second law of thermodynamics for batteries with vacuum state, Quantum 5, 408 (2021).
  73. M. Łobejko, Work and Fluctuations: Coherent vs. Incoherent Ergotropy Extraction, Quantum 6, 762 (2022).
  74. K. Korzekwa, C. T. Chubb, and M. Tomamichel, Avoiding irreversibility: Engineering resonant conversions of quantum resources, Phys. Rev. Lett. 122, 110403 (2019).
  75. A. K. Jensen, Asymptotic majorization of finite probability distributions, IEEE Trans. Inf. Theory 65, 8131 (2019).
  76. S. Du, Z. Bai, and Y. Guo, Conditions for coherence transformations under incoherent operations, Phys. Rev. A 91, 052120 (2015).
  77. T. Baumgratz, M. Cramer, and M. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
  78. F. Hiai and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Commun. Math. Phys. 143, 99 (1991).
  79. T. Ogawa and H. Nagaoka, Strong Converse and Stein’s Lemma in Quantum Hypothesis Testing (World Scientific, 2005) pp. 28–42.
  80. M. Tomamichel and V. Y. F. Tan, Second-order asymptotics for the classical capacity of image-additive quantum channels, Commun. Math. Phys. 338, 103 (2015).
  81. M. Tomamichel and M. Hayashi, A hierarchy of information quantities for finite block length analysis of quantum tasks, IEEE Trans. Inf. Theory 59, 7693 (2013b).
  82. M. Hayashi, Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding, Phys. Rev. A 76, 62301 (2006).
  83. H. Nagaoka, The converse part of the theorem for quantum Hoeffding bound, arXiv:quant-ph/0611289  (2006).
  84. M. Mosonyi and T. Ogawa, Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies, Commun. Math. Phys. 334, 1617 (2015a).
  85. M. Mosonyi and T. Ogawa, Two approaches to obtain the strong converse exponent of quantum hypothesis testing for general sequences of quantum states, IEEE Trans. Inf. Theory 61, 6975 (2015b).
  86. F. Hiai, M. Mosonyi, and T. Ogawa, Error exponents in hypothesis testing for correlated states on a spin chain, J. Math. Phys. 49, 032112 (2008).
  87. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, 2nd ed., Stochastic Modelling and Applied Probability (Springer, 1998).
  88. C. T. Chubb, V. Y. Tan, and M. Tomamichel, Moderate deviation analysis for classical communication over quantum channels, Commun. Math. Phys. 355, 1283 (2017).
  89. H.-C. Cheng and M.-H. Hsieh, Moderate deviation analysis for classical-quantum channels and quantum hypothesis testing, IEEE Trans. Inf. Theory , 1385 (2018).
  90. A. S. Holevo, Analog of a theory of statistical decisions in a noncommutative theory of probability, Tr. Mosk. Mat. Obs. 26, 133 (1972).
  91. M. Jarzyna and J. Kołodyński, Geometric approach to quantum statistical inference, IEEE JSAIT 1, 367 (2020).
  92. P. Faist, J. Oppenheim, and R. Renner, Gibbs-preserving maps outperform thermal operations in the quantum regime, New J. Phys. 17, 043003 (2015).
  93. I. Marvian, Symmetry, Asymmetry and Quantum Information, Ph.D. thesis, University of Waterloo (2012).
  94. G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: manipulations and monotones, New J. Phys. 10, 033023 (2008).
  95. K. Szymański, Numerical ranges and geometry in quantum information, Ph.D. thesis, Jagiellonian University (2022).
  96. J. Lebel, Basic Analysis II: Introduction to Real Analysis, Vol. 2 (CreateSpace Independent Publishing, 2018).
  97. M. Fekete, Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten, Mathematische Zeitschrift 17, 228 (1923).
  98. S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Heavy-tail phenomena: probabilistic and statistical modeling (Springer, 2007).
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.