Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Predicting Solar Proton Events of Solar Cycles 22-24 using GOES Proton & soft X-Ray flux features (2303.05446v2)

Published 9 Mar 2023 in astro-ph.SR and physics.space-ph

Abstract: Solar Energetic Particle (SEP) events and their major subclass, Solar Proton Events (SPEs), can have unfavorable consequences on numerous aspects of life and technology, making them one of the most harmful effects of solar activity. Garnering knowledge preceding such events by studying operational data flows is essential for their forecasting. Considering only Solar Cycle (SC) 24 in our previous study, Sadykov et al. 2021, we found that it may be sufficient to utilize only proton and soft X-ray (SXR) parameters for SPE forecasts. Here, we report a catalog recording $\geq$ 10 MeV $\geq$ 10 particle flux unit SPEs with their properties, spanning SCs 22-24, using NOAA's Geostationary Operational Environmental Satellite flux data. We report an additional catalog of daily proton and SXR flux statistics for this period, employing it to test the application of ML on the prediction of SPEs using a Support Vector Machine (SVM) and eXtreme Gradient Boosting (XGBoost). We explore the effects of training models with data from one and two SCs, evaluating how transferable a model can be across different time periods. XGBoost proved to be more accurate than SVMs for almost every test considered, while outperforming operational SWPC NOAA predictions and a persistence forecast. Interestingly, training done with SC 24 produces weaker TSS and HSS2, even when paired with SC 22 or SC 23, indicating transferability issues. This work contributes towards validating forecasts using long-spanning data -- an understudied area in SEP research that should be considered to verify the cross-cycle robustness of ML-driven forecasts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.