Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Task Aware Dreamer for Task Generalization in Reinforcement Learning (2303.05092v4)

Published 9 Mar 2023 in cs.LG

Abstract: A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. The ability to generalize across tasks is important as it determines an agent's adaptability to real-world scenarios where reward mechanisms might vary. In this work, we first show that training a general world model can utilize similar structures in these tasks and help train more generalizable agents. Extending world models into the task generalization setting, we introduce a novel method named Task Aware Dreamer (TAD), which integrates reward-informed features to identify consistent latent characteristics across tasks. Within TAD, we compute the variational lower bound of sample data log-likelihood, which introduces a new term designed to differentiate tasks using their states, as the optimization objective of our reward-informed world models. To demonstrate the advantages of the reward-informed policy in TAD, we introduce a new metric called Task Distribution Relevance (TDR) which quantitatively measures the relevance of different tasks. For tasks exhibiting a high TDR, i.e., the tasks differ significantly, we illustrate that Markovian policies struggle to distinguish them, thus it is necessary to utilize reward-informed policies in TAD. Extensive experiments in both image-based and state-based tasks show that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and display a strong generalization ability to unseen tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.