Quotients of abelian varieties by reflection groups (2303.04786v2)
Abstract: We prove (by a case-by-case analysis) a conjecture of Bernstein/Schwarzman to the effect that quotients of abelian varieties by suitable actions of (complex) reflection groups are weighted projective spaces, and show that this remains true after reduction to finite characteristic (including characteristics dividing the order of the group!). We also show that an analogous statement holds (with five explicitly enumerated exceptions) for actions of quaternionic reflection groups on supersingular abelian varieties.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.