Papers
Topics
Authors
Recent
2000 character limit reached

iBall: Augmenting Basketball Videos with Gaze-moderated Embedded Visualizations

Published 6 Mar 2023 in cs.HC and cs.GR | (2303.03476v3)

Abstract: We present iBall, a basketball video-watching system that leverages gaze-moderated embedded visualizations to facilitate game understanding and engagement of casual fans. Video broadcasting and online video platforms make watching basketball games increasingly accessible. Yet, for new or casual fans, watching basketball videos is often confusing due to their limited basketball knowledge and the lack of accessible, on-demand information to resolve their confusion. To assist casual fans in watching basketball videos, we compared the game-watching behaviors of casual and die-hard fans in a formative study and developed iBall based on the fndings. iBall embeds visualizations into basketball videos using a computer vision pipeline, and automatically adapts the visualizations based on the game context and users' gaze, helping casual fans appreciate basketball games without being overwhelmed. We confrmed the usefulness, usability, and engagement of iBall in a study with 16 casual fans, and further collected feedback from 8 die-hard fans.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.