Papers
Topics
Authors
Recent
2000 character limit reached

To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning

Published 6 Mar 2023 in cs.LG and stat.ML | (2303.03374v3)

Abstract: Transfer learning and ensembling are two popular techniques for improving the performance and robustness of neural networks. Due to the high cost of pre-training, ensembles of models fine-tuned from a single pre-trained checkpoint are often used in practice. Such models end up in the same basin of the loss landscape, which we call the pre-train basin, and thus have limited diversity. In this work, we show that ensembles trained from a single pre-trained checkpoint may be improved by better exploring the pre-train basin, however, leaving the basin results in losing the benefits of transfer learning and in degradation of the ensemble quality. Based on the analysis of existing exploration methods, we propose a more effective modification of the Snapshot Ensembles (SSE) for transfer learning setup, StarSSE, which results in stronger ensembles and uniform model soups.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.