Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantitative causality analysis with coarsely sampled time series (2303.03113v2)

Published 13 Feb 2023 in nlin.AO, nlin.CD, and physics.data-an

Abstract: The information flow-based quantitative causality analysis has been widely applied in different disciplines because of its origin from first principles, its concise form, and its computational efficiency. So far the algorithm for its estimation is based on differential dynamical systems, which, however, may make an issue for coarsely sampled time series. Here, we show that for linear systems, this is fine at least qualitatively; but for highly nonlinear systems, the bias increases significantly as the sampling frequency is reduced. This paper provides a partial solution to this problem, showing how causality analysis is assured faithful with coarsely sampled series when, of course, the statistics is sufficient. An explicit and concise formula has been obtained, with only sample covariances involved. It has been successfully applied to a system comprising of a pair of coupled R\"ossler oscillators. Particularly remarkable is the success when the two oscillators are nearly synchronized.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube