Decoding the Projective Transverse Field Ising Model (2303.03081v2)
Abstract: The competition between non-commuting projective measurements in discrete quantum circuits can give rise to entanglement transitions. It separates a regime where initially stored quantum information survives the time evolution from a regime where the measurements destroy the quantum information. Here we study one such system - the projective transverse field Ising model - with a focus on its capabilities as a quantum error correction code. The idea is to interpret one type of measurement as an error and the other type as a syndrome measurement. We demonstrate that there is a finite threshold below which quantum information encoded in an initially entangled state can be retrieved reliably. In particular, we implement the maximum likelihood decoder to demonstrate that the error correction threshold is distinct from the entanglement transition. This implies that there is a finite regime where quantum information is protected by the projective dynamics, but cannot be retrieved by using syndrome measurements.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.