Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Low-discrepancy Sampling in the Expanded Dimensional Space: An Acceleration Technique for Particle Swarm Optimization (2303.03055v3)

Published 6 Mar 2023 in cs.NE

Abstract: Compared with random sampling, low-discrepancy sampling is more effective in covering the search space. However, the existing research cannot definitely state whether the impact of a low-discrepancy sample on particle swarm optimization (PSO) is positive or negative. Using Niderreiter's theorem, this study completes an error analysis of PSO, which reveals that the error bound of PSO at each iteration depends on the dispersion of the sample set in an expanded dimensional space. Based on this error analysis, an acceleration technique for PSO-type algorithms is proposed with low-discrepancy sampling in the expanded dimensional space. The acceleration technique can generate a low-discrepancy sample set with a smaller dispersion, compared with a random sampling, in the expanded dimensional space; it also reduces the error at each iteration, and hence improves the convergence speed. The acceleration technique is combined with the standard PSO and the comprehensive learning particle swarm optimization, and the performance of the improved algorithm is compared with the original algorithm. The experimental results show that the two improved algorithms have significantly faster convergence speed under the same accuracy requirement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.