Minimax optimal high-dimensional classification using deep neural networks
Abstract: High-dimensional classification is a fundamentally important research problem in high-dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier possesses a complicated modular structure. We also show that classifiers based on deep neural networks can attain the above rate, hence, are minimax optimal.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.