Papers
Topics
Authors
Recent
Search
2000 character limit reached

Comparative Studies of Unsupervised and Supervised Learning Methods based on Multimedia Applications

Published 4 Mar 2023 in cs.CV and cs.MM | (2303.02446v1)

Abstract: In the mobile communication field, some of the video applications boosted the interest of robust methods for video quality assessment. Out of all existing methods, We Preferred, No Reference Video Quality Assessment is the one which is most needed in situations where the handiness of reference video is partially available. Our research interest lies in formulating and melding effective features into one model based on human visualizing characteristics. Our work explores comparative study between Supervised and unsupervised learning methods. Therefore, we implemented support vector regression algorithm as NR-based Video Quality Metric(VQM) for quality estimation with simplified input features. We concluded that our proposed model exhibited sparseness even after dimension reduction for objective scores of SSIM quality metric.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.