Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Attacks on Machine Learning in Embedded and IoT Platforms

Published 3 Mar 2023 in cs.LG, cs.AI, and cs.CR | (2303.02214v1)

Abstract: Machine learning (ML) algorithms are increasingly being integrated into embedded and IoT systems that surround us, and they are vulnerable to adversarial attacks. The deployment of these ML algorithms on resource-limited embedded platforms also requires the use of model compression techniques. The impact of such model compression techniques on adversarial robustness in ML is an important and emerging area of research. This article provides an overview of the landscape of adversarial attacks and ML model compression techniques relevant to embedded systems. We then describe efforts that seek to understand the relationship between adversarial attacks and ML model compression before discussing open problems in this area.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.