Papers
Topics
Authors
Recent
2000 character limit reached

Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion (2303.00753v1)

Published 1 Mar 2023 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles density functional theory (DFT) calculations for machine learning, and successfully obtained the force field of the binary Fe-Co alloy. Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force field predicted the correct phase transition range of Fe-Co alloy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.