Molecular dynamics simulation of the transformation of Fe-Co alloy by machine learning force field based on atomic cluster expansion (2303.00753v1)
Abstract: The force field describing the calculated interaction between atoms or molecules is the key to the accuracy of many molecular dynamics (MD) simulation results. Compared with traditional or semi-empirical force fields, machine learning force fields have the advantages of faster speed and higher precision. We have employed the method of atomic cluster expansion (ACE) combined with first-principles density functional theory (DFT) calculations for machine learning, and successfully obtained the force field of the binary Fe-Co alloy. Molecular dynamics simulations of Fe-Co alloy carried out using this ACE force field predicted the correct phase transition range of Fe-Co alloy.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.