Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

$L^{2}$-Hodge theory on complete almost Kähler manifold and its application (2302.14032v3)

Published 28 Jan 2023 in math.DG

Abstract: Let $(X,J,\omega)$ be a complete $2n$-dimensional almost K\"{a}hler manifold. First part of this article, we construct some identities of various Laplacians, generalized Hodge and Serre dualities, a generalized hard Lefschetz duality, and a Lefschetz decomposition, all on the space of $\ker{\Delta_{\partial}}\cap\ker{\Delta_{\bar{\partial}}}$ on pure bidegree. In the second part, as some applications of those identities, we establish some vanishing theorems on the spaces of $L{2}$-harmonic $(p,q)$-forms on $X$ under some growth assumptions on the K\"{a}her form $\omega$. We also give some $L{2}$-estimates to sharpen the vanishing theorems in two specific cases. At last of the article, as an application, we study the topology of the compact almost K\"{a}hler manifold with negative sectional curvature.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube