Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Non-parametric analysis of the Hubble Diagram with Neural Networks (2302.12582v1)

Published 24 Feb 2023 in astro-ph.CO, astro-ph.IM, and cond-mat.dis-nn

Abstract: The recent extension of the Hubble diagram of Supernovae and quasars to redshifts much higher than 1 prompted a revived interest in non-parametric approaches to test cosmological models and to measure the expansion rate of the Universe. In particular, it is of great interest to infer model-independent constraints on the possible evolution of the dark energy component. Here we present a new method, based on a Neural Network Regression, to analyze the Hubble Diagram in a completely non-parametric, model-independent fashion. We first validate the method through simulated samples with the same redshift distribution as the real ones, and discuss the limitations related to the "inversion problem" for the distance-redshift relation. We then apply this new technique to the analysis of the Hubble diagram of Supernovae and quasars. We confirm that the data up to $z \sim 1-1.5$ are in agreement with a flat ${\Lambda}CDM$ model with ${\Omega}_M \sim 0.3$, while $\sim 5$-sigma deviations emerge at higher redshifts. A flat ${\Lambda}CDM$ model would still be compatible with the data with ${\Omega}_M > 0.4$. Allowing for a generic evolution of the dark energy component, we find solutions suggesting an increasing value of ${\Omega}_M$ with the redshift, as predicted by interacting dark sector models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube