Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Theory of Quantum Circuits with Abelian Symmetries (2302.12466v3)

Published 24 Feb 2023 in quant-ph, cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: Quantum circuits with gates (local unitaries) respecting a global symmetry have broad applications in quantum information science and related fields, such as condensed matter theory and quantum thermodynamics. However, despite their widespread use, fundamental properties of such circuits are not well-understood. Recently, it was found that generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates that respect the same symmetry. This observation raises important open questions: What unitary transformations can be realized with k-local gates that respect a global symmetry? In other words, in the presence of a global symmetry, how does the locality of interactions constrain the possible time evolution of a composite system? In this work, we address these questions for the case of Abelian (commutative) symmetries and develop constructive methods for synthesizing circuits with such symmetries. Remarkably, as a corollary, we find that, while the locality of interactions still imposes additional constraints on realizable unitaries, certain restrictions observed in the case of non-Abelian symmetries do not apply to circuits with Abelian symmetries. For instance, in circuits with a general non-Abelian symmetry such as SU($d$), the unitary realized in a subspace with one irreducible representation (charge) of the symmetry dictates the realized unitaries in multiple other sectors with inequivalent representations of the symmetry. Furthermore, in certain sectors, rather than all unitaries respecting the symmetry, the realizable unitaries are the symplectic or orthogonal subgroups of this group. We prove that none of these restrictions appears in the case of Abelian symmetries. This result suggests that global non-Abelian symmetries may affect the thermalization of quantum systems in ways not possible under Abelian symmetries.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube