2000 character limit reached
Sharp upper bounds for Steklov eigenvalues of a hypersurface of revolution with two boundary components in Euclidean space (2302.11964v2)
Published 23 Feb 2023 in math.DG and math.SP
Abstract: We investigate the question of sharp upper bounds for the Steklov eigenvalues of a hypersurface of revolution of the Euclidean space with two boundary components isometric to two copies of $\mathbb{S}{n-1}$. For the case of the first non zero Steklov eigenvalue, we give a sharp upper bound $B_n(L)$ (that depends only on the dimension $n \ge 3$ and the meridian length $L>0$) which is reached by a degenerated metric $g*$, that we compute explicitly. We also give a sharp upper bound $B_n$ which depends only on $n$. Our method also permits us to prove some stability properties of these upper bounds.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.