Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diverse Policy Optimization for Structured Action Space (2302.11917v1)

Published 23 Feb 2023 in cs.LG and cs.AI

Abstract: Enhancing the diversity of policies is beneficial for robustness, exploration, and transfer in reinforcement learning (RL). In this paper, we aim to seek diverse policies in an under-explored setting, namely RL tasks with structured action spaces with the two properties of composability and local dependencies. The complex action structure, non-uniform reward landscape, and subtle hyperparameter tuning due to the properties of structured actions prevent existing approaches from scaling well. We propose a simple and effective RL method, Diverse Policy Optimization (DPO), to model the policies in structured action space as the energy-based models (EBM) by following the probabilistic RL framework. A recently proposed novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler. DPO follows a joint optimization framework: the outer layer uses the diverse policies sampled by the GFlowNet to update the EBM-based policies, which supports the GFlowNet training in the inner layer. Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies in challenging scenarios and substantially outperform existing state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube