Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast Computation of Branching Process Transition Probabilities via ADMM (2302.11801v1)

Published 23 Feb 2023 in stat.CO and stat.AP

Abstract: Branching processes are a class of continuous-time Markov chains (CTMCs) prevalent for modeling stochastic population dynamics in ecology, biology, epidemiology, and many other fields. The transient or finite-time behavior of these systems is fully characterized by their transition probabilities. However, computing them requires marginalizing over all paths between endpoint-conditioned values, which often poses a computational bottleneck. Leveraging recent results that connect generating function methods to a compressed sensing framework, we recast this task from the lens of sparse optimization. We propose a new solution method using variable splitting; in particular, we derive closed form updates in a highly efficient ADMM algorithm. Notably, no matrix products -- let alone inversions -- are required at any step. This reduces computational cost by orders of magnitude over existing methods, and the resulting algorithm is easily parallelizable and fairly insensitive to tuning parameters. A comparison to prior work is carried out in two applications to models of blood cell production and transposon evolution, showing that the proposed method is orders of magnitudes more scalable than existing work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.