Neutralized local entropy, and dimension bounds for invariant measurs (2302.10874v2)
Abstract: We introduce a notion of a point-wise entropy of measures (i.e local entropy) called neutralized local entropy, and compare it with the Brin-Katok local entropy. We show that the neutralized local entropy coincides with Brin-Katok local entropy almost everywhere. Neutralized local entropy is computed by measuring open sets with a relatively simple geometric description. Our proof uses a measure density lemma for Bowen balls, and a version of a Besicovitch covering lemma for Bowen balls. As an application, we prove a lower point-wise dimension bound for invariant measures, complementing the previously established bounds for upper point-wise dimension.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.