Deep Generative Neural Embeddings for High Dimensional Data Visualization (2302.10801v1)
Abstract: We propose a visualization technique that utilizes neural network embeddings and a generative network to reconstruct original data. This method allows for independent manipulation of individual image embeddings through its non-parametric structure, providing more flexibility than traditional autoencoder approaches. We have evaluated the effectiveness of this technique in data visualization and compared it to t-SNE and VAE methods. Furthermore, we have demonstrated the scalability of our method through visualizations on the ImageNet dataset. Our technique has potential applications in human-in-the-loop training, as it allows for independent editing of embedding locations without affecting the optimization process.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.