Papers
Topics
Authors
Recent
2000 character limit reached

Deep Generative Neural Embeddings for High Dimensional Data Visualization (2302.10801v1)

Published 25 Jan 2023 in cs.LG, cs.CV, and cs.HC

Abstract: We propose a visualization technique that utilizes neural network embeddings and a generative network to reconstruct original data. This method allows for independent manipulation of individual image embeddings through its non-parametric structure, providing more flexibility than traditional autoencoder approaches. We have evaluated the effectiveness of this technique in data visualization and compared it to t-SNE and VAE methods. Furthermore, we have demonstrated the scalability of our method through visualizations on the ImageNet dataset. Our technique has potential applications in human-in-the-loop training, as it allows for independent editing of embedding locations without affecting the optimization process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.