Robust Variance Estimation for Covariate-Adjusted Unconditional Treatment Effect in Randomized Clinical Trials with Binary Outcomes (2302.10404v2)
Abstract: To improve precision of estimation and power of testing hypothesis for an unconditional treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory agencies recommend using g-computation as a reliable method of covariate adjustment. However, the practical application of g-computation is hindered by the lack of an explicit robust variance formula that can be used for different unconditional treatment effects of interest. To fill this gap, we provide explicit and robust variance estimators for g-computation estimators and demonstrate through simulations that the variance estimators can be reliably applied in practice.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.