Metrology and multipartite entanglement in measurement-induced phase transition (2302.10132v4)
Abstract: Measurement-induced phase transition arises from the competition between a deterministic quantum evolution and a repeated measurement process. We explore the measurement-induced phase transition through the Quantum Fisher Information in two different metrological scenarios. We demonstrate through the scaling behavior of the quantum Fisher information the transition of the multi-partite entanglement across the phases. In analogy with standard quantum phase transition, we reveal signature of a measurement-induced phase transition in the non-analytic behaviour of the quantum Fisher information as the measurement strength approaches the critical value. Our results offer novel insights into the features of a quantum systems undergoing measurement-induced phase transition and indicate potential avenues for further exploration in the field of quantum physics.
- “Measurement-induced dynamics of many-body systems at quantum criticality”. Phys. Rev. B 102, 035119 (2020).
- “Entanglement in a fermion chain under continuous monitoring”. SciPost Phys. 7, 024 (2019).
- “Entanglement transition in a monitored free-fermion chain: From extended criticality to area law”. Phys. Rev. Lett. 126, 170602 (2021).
- “Many-body quantum Zeno effect and measurement-induced subradiance transition”. Quantum 5, 528 (2021).
- “Measurement-induced entanglement transitions in the quantum Ising chain: From infinite to zero clicks”. Phys. Rev. B 103, 224210 (2021).
- “Entanglement and correlation spreading in non-Hermitian spin chains”. Phys. Rev. B 107, L020403 (2023).
- “Fate of measurement-induced phase transition in long-range interactions”. Phys. Rev. Lett. 128, 010603 (2022).
- “Dynamical purification phase transition induced by quantum measurements”. Phys. Rev. X 10, 041020 (2020).
- “Scalable probes of measurement-induced criticality”. Phys. Rev. Lett. 125, 070606 (2020).
- “Unitary-projective entanglement dynamics”. Phys. Rev. B 99, 224307 (2019).
- “Measurement-induced phase transitions in the dynamics of entanglement”. Phys. Rev. X 9, 031009 (2019).
- “Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory”. PRX Quantum 2, 010352 (2021).
- “Quantum error correction in scrambling dynamics and measurement-induced phase transition”. Phys. Rev. Lett. 125, 030505 (2020).
- “Entanglement negativity at measurement-induced criticality”. PRX Quantum 2, 030313 (2021).
- “Measurement-induced topological entanglement transitions in symmetric random quantum circuits”. Nature Physics 17, 342–347 (2021). arXiv:2004.07243.
- “Statistical field theory : an introduction to exactly solved models in statistical physics”. Page 755. Oxford University Press. (2010).
- “Quantum criticality as a resource for quantum estimation”. Phys. Rev. A 78, 042105 (2008).
- “Optimal quantum estimation in spin systems at criticality”. Phys. Rev. A 78, 042106 (2008).
- Mankei Tsang. “Quantum transition-edge detectors”. Phys. Rev. A 88, 021801 (2013).
- P. A. Ivanov and D. Porras. “Adiabatic quantum metrology with strongly correlated quantum optical systems”. Phys. Rev. A 88, 023803 (2013).
- “Dicke coupling by feasible local measurements at the superradiant quantum phase transition”. Phys. Rev. E 93, 052118 (2016).
- “Quantum critical metrology”. Phys. Rev. Lett. 121, 020402 (2018).
- “Quantum transducer using a parametric driven-dissipative phase transition”. Phys. Rev. Lett. 123, 173601 (2019).
- “Critical quantum metrology with a finite-component quantum phase transition”. Phys. Rev. Lett. 124, 120504 (2020).
- Peter A Ivanov. “Steady-state force sensing with single trapped ion”. Phys. Scr. 95, 025103 (2020).
- “Global sensing and its impact for quantum many-body probes with criticality”. Phys. Rev. Lett. 126, 200501 (2021).
- “Probe incompatibility in multiparameter noisy quantum metrology”. Phys. Rev. X 12, 011039 (2022).
- “Critical parametric quantum sensing” (2021).
- “Multiparameter quantum critical metrology”. SciPost Phys. 13, 077 (2022).
- “Quantum information-geometry of dissipative quantum phase transitions”. Phys. Rev. E 89, 022102 (2014).
- “Geometry of quantum phase transitions”. Phys. Rep. 838, 1–72 (2020).
- “Fisher information and multiparticle entanglement”. Phys. Rev. A 85, 022321 (2012).
- Géza Tóth. “Multipartite entanglement and high-precision metrology”. Phys. Rev. A 85, 022322 (2012).
- “Fisher information and entanglement of non-Gaussian spin states”. Science 345, 424–427 (2014).
- “Measuring multipartite entanglement through dynamic susceptibilities”. Nature Physics 12, 778–782 (2016).
- Carl W. Helstrom. “Quantum detection and estimation theory”. Academic Press. (1976).
- “Multi-parameter quantum metrology”. Adv. Phys. X 1, 621–639 (2016).
- “A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging”. Phys. Lett. A 384, 126311 (2020).
- Manuel A. Ballester. “Entanglement is not very useful for estimating multiple phases”. Phys. Rev. A 70, 032310 (2004).
- “Quantum estimation of a two-phase spin rotation”. Quantum Meas. Quantum Metrol. 1, 12–20 (2013).
- “Optimal estimation of joint parameters in phase space”. Phys. Rev. A 87, 012107 (2013).
- “Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation”. Phys. Rev. Lett. 115, 110401 (2015).
- “Quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation”. Phys. Rev. X 5, 031018 (2015).
- “Sensitivity bounds for multiparameter quantum metrology”. Phys. Rev. Lett. 121, 130503 (2018).
- “Bayesian multiparameter quantum metrology with limited data”. Phys. Rev. A 101, 032114 (2020).
- “On quantumness in multi-parameter quantum estimation”. J. Stat. Mech. Theory Exp. 2019, 094010 (2019).
- “Evaluating the Holevo Cramér-Rao bound for multiparameter quantum metrology”. Phys. Rev. Lett. 123, 200503 (2019).
- “Tight bounds on the simultaneous estimation of incompatible parameters”. Phys. Rev. X 11, 011028 (2021).
- “Quantum semiparametric estimation”. Phys. Rev. X 10, 031023 (2020).
- “Multi-parameter estimation beyond quantum Fisher information”. J. Phys. A Math. Theor. 53, 363001 (2020).
- “Two soluble models of an antiferromagnetic chain”. Ann. Phys. (N. Y). 16, 407–466 (1961).
- E Barouch and B M McCoy. “Statistical mechanics of the XY model. II. Spin-correlation functions”. Phys. Rev. A 3, 786–804 (1971).
- “The quantum Ising chain for beginners” (2020).
- “Heralded magnetism in non-Hermitian atomic systems”. Phys. Rev. X 4, 041001 (2014).
- “Compatibility in multiparameter quantum metrology”. Phys. Rev. A 94, 052108 (2016).
- “Quantum Fisher information matrix and multiparameter estimation”. Journal of Physics A: Mathematical and Theoretical 53, 023001 (2019).
- “Quantum metrology for the Ising Hamiltonian with transverse magnetic field”. New Journal of Physics 17, 073032 (2015).
- “Multipartite entanglement in the measurement-induced phase transition of the quantum ising chain” (2023). arXiv:2302.06477.
- Ravinder Rupchand Puri. “Algebra of the exponential operator”. Pages 37–53. Springer Berlin Heidelberg. Berlin, Heidelberg (2001).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.