Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PiRL: Participant-Invariant Representation Learning for Healthcare Using Maximum Mean Discrepancy and Triplet Loss (2302.09126v1)

Published 17 Feb 2023 in eess.SP

Abstract: Due to individual heterogeneity, person-specific models are usually achieving better performance than generic (one-size-fits-all) models in data-driven health applications. However, generic models are usually preferable in real-world applications, due to the difficulties of developing person-specific models, such as new-user-adaptation issues and system complexities. To improve the performance of generic models, we propose a Participant-invariant Representation Learning (PiRL) framework, which utilizes maximum mean discrepancy (MMD) loss and domain-adversarial training to encourage the model to learn participant-invariant representations. Further, to avoid trivial solutions in the learned representations, a triplet loss based constraint is used for the model to learn the label-distinguishable embeddings. The proposed framework is evaluated on two public datasets (CLAS and Apnea-ECG), and significant performance improvements are achieved compared to the baseline models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.