Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised Representation Learning from Temporal Ordering of Automated Driving Sequences (2302.09043v3)

Published 17 Feb 2023 in cs.CV

Abstract: Self-supervised feature learning enables perception systems to benefit from the vast raw data recorded by vehicle fleets worldwide. While video-level self-supervised learning approaches have shown strong generalizability on classification tasks, the potential to learn dense representations from sequential data has been relatively unexplored. In this work, we propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks. We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems, and formulate the sequential ordering by predicting frame transition probabilities in a transformer-based multi-frame architecture whose complexity scales less than quadratic with respect to the sequence length. Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods as well as supervised transfer learning initialization strategies, achieving an improvement of +0.7% in mAP for object detection and +2.0% in the HOTA score for multi-object tracking.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.