Phase transition in Stabilizer Entropy and efficient purity estimation (2302.07895v3)
Abstract: Stabilizer Entropy (SE) quantifies the spread of a state in the basis of Pauli operators. It is a computationally tractable measure of non-stabilizerness and thus a useful resource for quantum computation. SE can be moved around a quantum system, effectively purifying a subsystem from its complex features. We show that there is a phase transition in the residual subsystem SE as a function of the density of non-Clifford resources. This phase transition has important operational consequences: it marks the onset of a subsystem purity estimation protocol that requires $poly(n)exp(t)$ many queries to a circuit containing $t$ non-Clifford gates that prepares the state from a stabilizer state. Then, for $t=O(\log_2 n)$, it estimates the purity with polynomial resources and, for highly entangled states, attains an exponential speed-up over the known state-of-the-art algorithms.
- P. W. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134–124–134.
- A. Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).
- E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum approximate optimization algorithm,” (2016), arXiv:1602.07674 .
- A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
- D. Gottesman, “The Heisenberg Representation of Quantum Computers,” (1998), arXiv:quant-ph/9807006 .
- J. S. Bell, Phys. Phys. Fiz. 1, 195 (1964).
- J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
- D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
- S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
- E. T. Campbell and D. E. Browne, Phys. Rev. Lett. 104, 030503 (2010).
- E. T. Campbell and M. Howard, Phys. Rev. Lett. 118, 060501 (2017a).
- E. T. Campbell, Phys. Rev. A 83, 032317 (2011).
- E. T. Campbell and M. Howard, Phys. Rev. A 95, 022316 (2017b).
- S. Bravyi and J. Haah, Phys. Rev. A 86, 052329 (2012).
- H. Zhu, R. Kueng, M. Grassl, and D. Gross, “The Clifford group fails gracefully to be a unitary 4-design,” (2016), arXiv:1609.08172 [quant-ph] .
- S. Bravyi and D. Gosset, Phys. Rev. Lett. 116, 250501 (2016).
- S. True and A. Hamma, Quantum 6, 818 (2022).
- S. Piemontese, T. Roscilde, and A. Hamma, “Entanglement complexity of the Rokhsar-Kivelson-sign wavefunctions,” (2022), arXiv:2211.01428 [quant-ph] .
- M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501 (2017).
- Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
- T. Haug and M. Kim, PRX Quantum 4, 010301 (2023).
- J. Odavić, T. Haug, G. Torre, A. Hamma, F. Franchini, and S. M. Giampaolo, “Complexity of frustration: A new source of non-local non-stabilizerness,” (2022), arXiv:2209.10541 [cond-mat, Phys.:quant-ph] .
- T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023).
- S. J. van Enk and C. W. J. Beenakker, Phys. Rev. Lett. 108, 110503 (2012).
- Note that the null set of M(⋅)𝑀⋅M(\cdot)italic_M ( ⋅ ) does not contain convex combinations of stabilizer states.
- H. Zhu, Phys. Rev. A 96, 062336 (2017).
- S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
- Any permutation of the qubits belongs to the Clifford group because the permutation group Snsubscript𝑆𝑛S_{n}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is generated by swaps operator and the swap operator Sijsubscript𝑆𝑖𝑗S_{ij}italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT between the qubits i𝑖iitalic_i-th and j𝑗jitalic_j-th is made out of 3333 CNOTs.
- D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and I. L. Chuang, “Entanglement in the stabilizer formalism,” (2004), arXiv:quant-ph/0406168 .
- A. Montanaro, “Learning stabilizer states by Bell sampling,” (2017), arXiv:1707.04012 [quant-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.