Papers
Topics
Authors
Recent
2000 character limit reached

Phase transition in Stabilizer Entropy and efficient purity estimation (2302.07895v3)

Published 15 Feb 2023 in quant-ph

Abstract: Stabilizer Entropy (SE) quantifies the spread of a state in the basis of Pauli operators. It is a computationally tractable measure of non-stabilizerness and thus a useful resource for quantum computation. SE can be moved around a quantum system, effectively purifying a subsystem from its complex features. We show that there is a phase transition in the residual subsystem SE as a function of the density of non-Clifford resources. This phase transition has important operational consequences: it marks the onset of a subsystem purity estimation protocol that requires $poly(n)exp(t)$ many queries to a circuit containing $t$ non-Clifford gates that prepares the state from a stabilizer state. Then, for $t=O(\log_2 n)$, it estimates the purity with polynomial resources and, for highly entangled states, attains an exponential speed-up over the known state-of-the-art algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. P. W. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134–124–134.
  2. A. Y. Kitaev, Russ. Math. Surv. 52, 1191 (1997).
  3. E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum approximate optimization algorithm,”  (2016), arXiv:1602.07674 .
  4. A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
  5. D. Gottesman, “The Heisenberg Representation of Quantum Computers,”  (1998), arXiv:quant-ph/9807006 .
  6. J. S. Bell, Phys. Phys. Fiz. 1, 195 (1964).
  7. J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
  8. D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
  9. S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
  10. E. T. Campbell and D. E. Browne, Phys. Rev. Lett. 104, 030503 (2010).
  11. E. T. Campbell and M. Howard, Phys. Rev. Lett. 118, 060501 (2017a).
  12. E. T. Campbell, Phys. Rev. A 83, 032317 (2011).
  13. E. T. Campbell and M. Howard, Phys. Rev. A 95, 022316 (2017b).
  14. S. Bravyi and J. Haah, Phys. Rev. A 86, 052329 (2012).
  15. H. Zhu, R. Kueng, M. Grassl,  and D. Gross, “The Clifford group fails gracefully to be a unitary 4-design,”  (2016), arXiv:1609.08172 [quant-ph] .
  16. S. Bravyi and D. Gosset, Phys. Rev. Lett. 116, 250501 (2016).
  17. S. True and A. Hamma, Quantum 6, 818 (2022).
  18. S. Piemontese, T. Roscilde,  and A. Hamma, “Entanglement complexity of the Rokhsar-Kivelson-sign wavefunctions,”  (2022), arXiv:2211.01428 [quant-ph] .
  19. M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501 (2017).
  20. Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
  21. T. Haug and M. Kim, PRX Quantum 4, 010301 (2023).
  22. J. Odavić, T. Haug, G. Torre, A. Hamma, F. Franchini,  and S. M. Giampaolo, “Complexity of frustration: A new source of non-local non-stabilizerness,”  (2022), arXiv:2209.10541 [cond-mat, Phys.:quant-ph] .
  23. T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023).
  24. S. J. van Enk and C. W. J. Beenakker, Phys. Rev. Lett. 108, 110503 (2012).
  25. Note that the null set of M⁢(⋅)𝑀⋅M(\cdot)italic_M ( ⋅ ) does not contain convex combinations of stabilizer states.
  26. H. Zhu, Phys. Rev. A 96, 062336 (2017).
  27. S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
  28. Any permutation of the qubits belongs to the Clifford group because the permutation group Snsubscript𝑆𝑛S_{n}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is generated by swaps operator and the swap operator Si⁢jsubscript𝑆𝑖𝑗S_{ij}italic_S start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT between the qubits i𝑖iitalic_i-th and j𝑗jitalic_j-th is made out of 3333 CNOTs.
  29. D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi,  and I. L. Chuang, “Entanglement in the stabilizer formalism,”  (2004), arXiv:quant-ph/0406168 .
  30. A. Montanaro, “Learning stabilizer states by Bell sampling,”  (2017), arXiv:1707.04012 [quant-ph] .
Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.