Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Multi-user Massive MIMO with Channel Aging (2302.06853v2)

Published 14 Feb 2023 in eess.SP

Abstract: The design of beamforming for downlink multi-user massive multi-input multi-output (MIMO) relies on accurate downlink channel state information (CSI) at the transmitter (CSIT). In fact, it is difficult for the base station (BS) to obtain perfect CSIT due to user mobility, and latency/feedback delay (between downlink data transmission and CSI acquisition). Hence, robust beamforming under imperfect CSIT is needed. In this paper, considering multiple antennas at all nodes (base station and user terminals), we develop a multi-agent deep reinforcement learning (DRL) framework for massive MIMO under imperfect CSIT, where the transmit and receive beamforming are jointly designed to maximize the average information rate of all users. Leveraging this DRL-based framework, interference management is explored and three DRL-based schemes, namely the distributed-learning-distributed-processing scheme, partial-distributed-learning-distributed-processing, and central-learning distributed-processing scheme, are proposed and analyzed. This paper 1) highlights the fact that the DRL-based strategies outperform the random action-chosen strategy and the delay-sensitive strategy named as sample-and-hold (SAH) approach, and achieved over 90% of the information rate of two selected benchmarks with lower complexity: the zero-forcing channel-inversion (ZF-CI) with perfect CSIT and the Greedy Beam Selection strategy, 2) demonstrates the inherent robustness of the proposed designs in the presence of channel aging. 3) conducts detailed convergence and scalability analysis on the proposed framework.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.