Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Grey Wolf Optimizer and Whale Optimization Algorithm for Stochastic Inventory Management of Reusable Products in a two-level Supply Chain (2302.05796v1)

Published 11 Feb 2023 in math.OC

Abstract: Product reuse and recovery is an efficient tool that helps companies to simultaneously address economic and environmental dimensions of sustainability. This paper presents a novel problem for stock management of reusable products in a single-vendor, multi-product, multi-retailer network. Several constraints, such as the maximum budget, storage capacity, number of orders, etc., are considered in their stochastic form to provide a more realistic framework. The presented problem is formulated as a constrained nonlinear mathematical model. The chance-constrained programming method is suggested to deal with the constraints' uncertainty. Regarding the nonlinearity of the model, grey wolf optimizer (GWO) and whale optimization algorithm (WOA) as two novel metaheuristics are presented as solution approaches, and the sequential quadratic programming (SQP) exact algorithm validates their performance. The parameters of algorithms are calibrated using the Taguchi method for the design of experiments. Extensive analysis is established by solving several numerical results in different sizes and utilizing several comparison measures. Also, the results are compared statistically using proper parametric and non-parametric tests. The analysis of the results shows a significant difference between the algorithms, and GWO has a better performance for solving the presented problem. In addition, both algorithms perform well in searching the solution space, where the GWO and WOA differences with the optimal solution of the SQP algorithm are negligible.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.