Papers
Topics
Authors
Recent
2000 character limit reached

p-Adic Statistical Field Theory and Convolutional Deep Boltzmann Machines (2302.03817v2)

Published 8 Feb 2023 in hep-th and cond-mat.dis-nn

Abstract: Understanding how deep learning architectures work is a central scientific problem. Recently, a correspondence between neural networks (NNs) and Euclidean quantum field theories (QFTs) has been proposed. This work investigates this correspondence in the framework of p-adic statistical field theories (SFTs) and neural networks (NNs). In this case, the fields are real-valued functions defined on an infinite regular rooted tree with valence p, a fixed prime number. This infinite tree provides the topology for a continuous deep Boltzmann machine (DBM), which is identified with a statistical field theory (SFT) on this infinite tree. In the p-adic framework, there is a natural method to discretize SFTs. Each discrete SFT corresponds to a Boltzmann machine (BM) with a tree-like topology. This method allows us to recover the standard DBMs and gives new convolutional DBMs. The new networks use O(N) parameters while the classical ones use O(N{2}) parameters.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.