Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum dynamics of coupled excitons and phonons in chain-like systems: tensor train approaches and higher-order propagators (2302.03568v4)

Published 7 Feb 2023 in quant-ph

Abstract: We investigate tensor-train approaches to the solution of the time-dependent Schr\"{o}dinger equation for chain-like quantum systems with on-site and nearest-neighbor interactions only. Using efficient low-rank tensor train representations, we aim at reducing memory consumption and computational costs. As an example, coupled excitons and phonons modeled in terms of Fr\"{o}hlich-Holstein type Hamiltonians are studied here. By comparing our tensor-train based results with semi-analytical results, we demonstrate the key role of the ranks of the quantum state vectors. Typically, an excellent quality of the solutions is found only when the maximum number of ranks exceeds a certain value. One class of propagation schemes builds on splitting the Hamiltonian into two groups of interleaved nearest-neighbor interactions commutating within each of the groups. In particular, the 4-th order Yoshida-Neri and the 8-th order Kahan-Li symplectic composition yield results close to machine precision. Similar results are found for 4-th and 8-th order global Krylov scheme. However, the computational effort currently restricts the use of these four propagators to rather short chains which also applies to propagators based on the time-dependent variational principle, typically used for matrix product states. Yet another class of propagators involves explicit, time-symmetrized Euler integrators. Especially the 4-th order variant is recommended for quantum simulations of longer chains, even though the high precision of the splitting schemes cannot be reached. Moreover, the scaling of the computational effort with the dimensions of the local Hilbert spaces is much more favorable for the differencing than for splitting or variational schemes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube