Papers
Topics
Authors
Recent
Search
2000 character limit reached

An inverse potential problem for the stochastic diffusion equation with a multiplicative white noise

Published 7 Feb 2023 in math.AP | (2302.03333v1)

Abstract: This work concerns the direct and inverse potential problems for the stochastic diffusion equation driven by a multiplicative time-dependent white noise. The direct problem is to examine the well-posedness of the stochastic diffusion equation for a given potential, while the inverse problem is to determine the potential from the expectation of the solution at a fixed observation point inside the spatial domain. The direct problem is shown to admit a unique and positive mild solution if the initial value is nonnegative. Moreover, an explicit formula is deduced to reconstruct the square of the potential, which leads to the uniqueness of the inverse problem for nonnegative potential functions. Two regularization methods are utilized to overcome the instability of the numerical differentiation in the reconstruction formula. Numerical results show that the methods are effective to reconstruct both smooth and nonsmooth potential functions.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.