Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Diversity is Definitely Needed: Improving Model-Agnostic Zero-shot Classification via Stable Diffusion (2302.03298v4)

Published 7 Feb 2023 in cs.CV and cs.AI

Abstract: In this work, we investigate the problem of Model-Agnostic Zero-Shot Classification (MA-ZSC), which refers to training non-specific classification architectures (downstream models) to classify real images without using any real images during training. Recent research has demonstrated that generating synthetic training images using diffusion models provides a potential solution to address MA-ZSC. However, the performance of this approach currently falls short of that achieved by large-scale vision-LLMs. One possible explanation is a potential significant domain gap between synthetic and real images. Our work offers a fresh perspective on the problem by providing initial insights that MA-ZSC performance can be improved by improving the diversity of images in the generated dataset. We propose a set of modifications to the text-to-image generation process using a pre-trained diffusion model to enhance diversity, which we refer to as our $\textbf{bag of tricks}$. Our approach shows notable improvements in various classification architectures, with results comparable to state-of-the-art models such as CLIP. To validate our approach, we conduct experiments on CIFAR10, CIFAR100, and EuroSAT, which is particularly difficult for zero-shot classification due to its satellite image domain. We evaluate our approach with five classification architectures, including ResNet and ViT. Our findings provide initial insights into the problem of MA-ZSC using diffusion models. All code will be available on GitHub.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.