Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reduction for asynchronous Boolean networks: elimination of negatively autoregulated components (2302.03108v2)

Published 6 Feb 2023 in cs.DM

Abstract: To simplify the analysis of Boolean networks, a reduction in the number of components is often considered. A popular reduction method consists in eliminating components that are not autoregulated, using variable substitution. In this work, we show how this method can be extended, for asynchronous dynamics of Boolean networks, to the elimination of vertices that have a negative autoregulation, and study the effects on the dynamics and interaction structure. For elimination of non-autoregulated variables, the preservation of attractors is in general guaranteed only for fixed points. Here we give sufficient conditions for the preservation of complex attractors. The removal of so called mediator nodes (i.e. vertices with indegree and outdegree one) is often considered, and frequently does not affect the attractor landscape. We clarify that this is not always the case, and in some situations even subtle changes in the interaction structure can lead to a different asymptotic behaviour. Finally, we use properties of the more general elimination method introduced here to give an alternative proof for a bound on the number of attractors of asynchronous Boolean networks in terms of the cardinality of positive feedback vertex sets of the interaction graph.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube