Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Yang--Baxter correspondences and set-theoretical solutions to the Zamolodchikov tetrahedron equation

Published 6 Feb 2023 in nlin.SI, math-ph, math.MP, and math.QA | (2302.03059v2)

Abstract: We study tetrahedron maps, which are set-theoretical solutions to the Zamolodchikov tetrahedron equation, and their matrix Lax representations defined by the local Yang--Baxter equation. Sergeev [S.M. Sergeev 1998 Lett. Math. Phys. 45, 113--119] presented classification results on three-dimensional tetrahedron maps obtained from the local Yang--Baxter equation for a certain class of matrix-functions in the situation when the equation possesses a unique solution which determines a tetrahedron map. In this paper, using correspondences arising from the local Yang--Baxter equation for some simple $2\times 2$ matrix-functions, we show that there are (non-unique) solutions to the local Yang--Baxter equation which define tetrahedron maps that do not belong to the Sergeev list; this paves the way for a new, wider classification of tetrahedron maps. We present invariants for the derived tetrahedron maps and prove Liouville integrability for some of them. Furthermore, using the approach of solving correspondences arising from the local Yang--Baxter equation, we obtain several new birational tetrahedron maps, including maps with matrix Lax representations on arbitrary groups, a $9$-dimensional map associated with a Darboux transformation for the derivative nonlinear Schr\"odinger (NLS) equation, and a $9$-dimensional generalisation of the $3$-dimensional Hirota map.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.