Papers
Topics
Authors
Recent
2000 character limit reached

U-Clip: On-Average Unbiased Stochastic Gradient Clipping (2302.02971v1)

Published 6 Feb 2023 in cs.LG, math.OC, and stat.ML

Abstract: U-Clip is a simple amendment to gradient clipping that can be applied to any iterative gradient optimization algorithm. Like regular clipping, U-Clip involves using gradients that are clipped to a prescribed size (e.g. with component wise or norm based clipping) but instead of discarding the clipped portion of the gradient, U-Clip maintains a buffer of these values that is added to the gradients on the next iteration (before clipping). We show that the cumulative bias of the U-Clip updates is bounded by a constant. This implies that the clipped updates are unbiased on average. Convergence follows via a lemma that guarantees convergence with updates $u_i$ as long as $\sum_{i=1}t (u_i - g_i) = o(t)$ where $g_i$ are the gradients. Extensive experimental exploration is performed on CIFAR10 with further validation given on ImageNet.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.