Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Probing type-II Ising pairing using the spin-mixing parameter (2302.02699v2)

Published 6 Feb 2023 in cond-mat.mes-hall

Abstract: The immunity of Ising superconductors to external magnetic fields originates from a spin locking of the paired electrons to an intrinsic Zeeman-like field. The spin-momentum locking in non-centrosymmetric crystalline materials leads to type-I Ising pairing in which the direction of the intrinsic field can be deduced from the spin expectation values. Conversely, in centrosymmetric crystals the electron spins locked to the orbitals can form Ising type-II pairs consisting of spin-orbit split doublets. Due to time-reversal symmetry, the doublets are spin degenerate, making it difficult to read the spin polarization of bands and the direction of spin-orbit fields. Here we present an efficient approach to determine the direction of the intrinsic field using the spin-mixing parameter $b2$. Using first principles calculations based on the density functional theory, we study monolayer transition metal dichalcogenide superconductors PdTe$_2$, NbTe$_2$, and TiSe$_2$ with the 1T structure. We calculate $b2$ for individual Fermi pockets and provide a general picture of possible Ising type-II pairing within the full Brillouin zone. In order to complement our first principles results, we use group theory to provide a detailed picture of spin-orbit coupling and spin mixing in the relevant bands forming Fermi pockets. We demonstrate that contrary to the anticipated effects of spin-orbit locking, not every spin-orbit split spin doublet actively participates in Ising pairing. Finally, by connecting the spin-mixing parameter $b2$ with the intrinsic out-of-plane Zeeman field we estimate the upper in-plane critical magnetic field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. Tinkham, Introduction to Superconductivity: Second Edition, second edition ed. (Dover Publications, Mineola, NY, 2004).
  2. D. Zhang and J. Falson, Ising pairing in atomically thin superconductors, Nanotechnology 32, 502003 (2021).
  3. G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100, 580 (1955).
  4. R. J. Elliott, Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors, Phys. Rev. 96, 266 (1954).
  5. L. P. Gor’kov and E. I. Rashba, Superconducting 2d system with lifted spin degeneracy: Mixed singlet-triplet state, Phys. Rev. Lett. 87, 037004 (2001).
  6. P. A. Frigeri, D. F. Agterberg, and M. Sigrist, Spin susceptibility in superconductors without inversion symmetry, New J. Phys. 6, 115 (2004).
  7. Y. M. Xie, B. T. Zhou, and K. T. Law, Spin-Orbit-Parity-Coupled Superconductivity in Topological Monolayer WTe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Phys. Rev. Lett. 125, 107001 (2020).
  8. M. Sigrist, Introduction to Unconventional Superconductivity, AIP Conference Proceedings 789, 165 (2005).
  9. B. S. Chandrasekhar, A note on the maximum critical field of high-field superconductors, Appl. Phys. Lett. 1, 7 (1962).
  10. A. M. Clogston, Upper limit for the critical field in hard superconductors, Phys. Rev. Lett. 9, 266 (1962).
  11. Y. Saito, T. Nojima, and Y. Iwasa, Highly crystalline 2D superconductors, Nat. Rev. Mater. 2, 1 (2016b).
  12. J. Fabian and S. Das Sarma, Spin Relaxation of Conduction Electrons in Polyvalent Metals: Theory and a Realistic Calculation, Phys. Rev. Lett. 81, 5624 (1998).
  13. D. R. Hamann, Optimized norm-conserving vanderbilt pseudopotentials, Phys. Rev. B 88, 085117 (2013).
  14. See Supplemental Material at URL for additional figures, symmetry analysis of the spin-orbit coupling and a single band superconductvity model.
  15. C. Wang, Y. Xu, and W. Duan, Ising Superconductivity and Its Hidden Variants, Acc. Mater. Res. 2, 526 (2021).
  16. R. F. Frindt, Superconductivity in ultrathin NbSe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT layers, Phys. Rev. Lett. 28, 299 (1972).
  17. M. Van Maaren and G. Schaeffer, Some new superconducting group va dichalcogenides, Phys. Lett. A 24, 645 (1967).
  18. R. H. Friend, D. Jerome, and A. D. Yoffe, High-pressure transport properties of TiS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and TiSe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, J. Phys. C: Solid State Phys. 15, 2183 (1982).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube