Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Robust Contrastive Learning from the Adversarial Perspective (2302.02502v2)

Published 5 Feb 2023 in cs.LG and cs.CV

Abstract: To advance the understanding of robust deep learning, we delve into the effects of adversarial training on self-supervised and supervised contrastive learning alongside supervised learning. Our analysis uncovers significant disparities between adversarial and clean representations in standard-trained networks across various learning algorithms. Remarkably, adversarial training mitigates these disparities and fosters the convergence of representations toward a universal set, regardless of the learning scheme used. Additionally, increasing the similarity between adversarial and clean representations, particularly near the end of the network, enhances network robustness. These findings offer valuable insights for designing and training effective and robust deep learning networks. Our code is released at \textcolor{magenta}{\url{https://github.com/softsys4ai/CL-Robustness}}.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.