Coupling a Cosmic String to a TQFT (2302.00777v3)
Abstract: A common framework of particle physics consists of two sectors of particles, such as the Standard Model and a dark sector, with some interaction between them. In this work, we initiate the study of a qualitatively different setup in which one of the sectors is a topological quantum field theory (TQFT). Instead of particles, the physics of a TQFT only manifests itself in non-trivial spacetime topologies. Topological defects provide a natural place to investigate such effects. In particular, we consider two possible ways in which axionic cosmic strings can interact with a Zn TQFT. One of them, by extending the structure of the axion coupling, leads to specific predictions for the localized degrees of freedom on the cosmic string, which can in turn effect their evolution and leave observable signals. The second approach, by gauging a discrete subgroup of the axionic shift symmetry, leads to dramatic changes in the string spectrum. We stress that the scenario considered here should be regarded as a plausible way for new physics to arise since it can be the low energy effective field theory for quite generic scenarios at high energies. To demonstrate this point and further illustrate the physical implications, we constructed such UV completions for both of the cases of couplings to TQFTs. The detailed prediction for observable signals of such scenarios needs further investigation. At the same time, our results demonstrate that there are rich new phenomena in this scenario.
- A. Kapustin and N. Seiberg, “Coupling a QFT to a TQFT and Duality,” JHEP 04 (2014) 001, arXiv:1401.0740 [hep-th].
- N. Seiberg, “Modifying the Sum Over Topological Sectors and Constraints on Supergravity,” JHEP 07 (2010) 070, arXiv:1005.0002 [hep-th].
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- T. Pantev and E. Sharpe, “Notes on gauging noneffective group actions,” arXiv:hep-th/0502027.
- T. Pantev and E. Sharpe, “String compactifications on Calabi-Yau stacks,” Nucl. Phys. B 733 (2006) 233–296, arXiv:hep-th/0502044.
- T. Pantev and E. Sharpe, “GLSM’s for Gerbes (and other toric stacks),” Adv. Theor. Math. Phys. 10 no. 1, (2006) 77–121, arXiv:hep-th/0502053.
- M. G. Alford, J. March-Russell, and F. Wilczek, “Discrete Quantum Hair on Black Holes and the Nonabelian Aharonov-Bohm Effect,” Nucl. Phys. B 337 (1990) 695–708.
- J. Preskill and L. M. Krauss, “Local Discrete Symmetry and Quantum Mechanical Hair,” Nucl. Phys. B 341 (1990) 50–100.
- M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill, “Quantum field theory of nonAbelian strings and vortices,” Nucl. Phys. B 384 (1992) 251–317, arXiv:hep-th/9112038.
- J. Wang, “Anomaly and Cobordism Constraints Beyond the Standard Model: Topological Force,” arXiv:2006.16996 [hep-th].
- J. Wang, “Ultra Unification,” Phys. Rev. D 103 no. 10, (2021) 105024, arXiv:2012.15860 [hep-th].
- C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in 2022 Snowmass Summer Study. 5, 2022. arXiv:2205.09545 [hep-th].
- T. D. Brennan and C. Cordova, “Axions, higher-groups, and emergent symmetry,” JHEP 02 (2022) 145, arXiv:2011.09600 [hep-th].
- M. M. Anber and E. Poppitz, “Nonperturbative effects in the Standard Model with gauged 1-form symmetry,” JHEP 12 (2021) 055, arXiv:2110.02981 [hep-th].
- C. Cordova, S. Hong, S. Koren, and K. Ohmori, “Neutrino Masses from Generalized Symmetry Breaking,” arXiv:2211.07639 [hep-ph].
- J. McNamara and M. Reece, “Reflections on Parity Breaking,” arXiv:2212.00039 [hep-th].
- C. Cordova and S. Koren, “Higher Flavor Symmetries in the Standard Model,” arXiv:2212.13193 [hep-ph].
- S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177 (1969) 2426–2438.
- J. Bell and R. Jackiw, “A PCAC puzzle: π0→γγ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model,” Nuovo Cim. A 60 (1969) 47–61.
- J. E. Kim, “Weak Interaction Singlet and Strong CP Invariance,” Phys. Rev. Lett. 43 (1979) 103.
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “Can Confinement Ensure Natural CP Invariance of Strong Interactions?,” Nucl. Phys. B 166 (1980) 493–506.
- Y. Hidaka, M. Nitta, and R. Yokokura, “Higher-form symmetries and 3-group in axion electrodynamics,” Phys. Lett. B 808 (2020) 135672, arXiv:2006.12532 [hep-th].
- Y. Hidaka, M. Nitta, and R. Yokokura, “Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics,” JHEP 01 (2021) 173, arXiv:2009.14368 [hep-th].
- C. Cordova and K. Ohmori, “Non-Invertible Chiral Symmetry and Exponential Hierarchies,” arXiv:2205.06243 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141 [hep-th].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
- G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,” Commun. Math. Phys. 125 (1989) 417.
- G. T. Horowitz and M. Srednicki, “A Quantum Field Theoretic Description of Linking Numbers and Their Generalization,” Commun. Math. Phys. 130 (1990) 83–94.
- T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
- J. A. Harvey, “TASI 2003 lectures on anomalies,” 9, 2005. arXiv:hep-th/0509097.
- S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University Press, 8, 2013.
- S. Hong and G. Rigo, “Anomaly Inflow and Holography,” JHEP 05 (2021) 072, arXiv:2012.03964 [hep-th].
- J. A. Harvey and O. Ruchayskiy, “The Local structure of anomaly inflow,” JHEP 06 (2001) 044, arXiv:hep-th/0007037.
- S. G. Naculich, “Axionic Strings: Covariant Anomalies and Bosonization of Chiral Zero Modes,” Nucl. Phys. B 296 (1988) 837–867.
- C. Csaki and H. Murayama, “Discrete anomaly matching,” Nucl. Phys. B 515 (1998) 114–162, arXiv:hep-th/9710105.
- R. Jackiw and P. Rossi, “Zero Modes of the Vortex - Fermion System,” Nucl. Phys. B 190 (1981) 681–691.
- T. W. B. Kibble, “Some Implications of a Cosmological Phase Transition,” Phys. Rept. 67 (1980) 183.
- T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” J. Phys. A 9 (1976) 1387–1398.
- W. H. Zurek, “Cosmological experiments in condensed matter systems,” Phys. Rept. 276 (1996) 177–221, arXiv:cond-mat/9607135.
- W. H. Zurek, “Cosmological Experiments in Superfluid Helium?,” Nature 317 (1985) 505–508.
- J. Polchinski, “Open heterotic strings,” JHEP 09 (2006) 082, arXiv:hep-th/0510033.
- E. Witten, “Superconducting Strings,” Nucl. Phys. B 249 (1985) 557–592.
- Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the Standard Model,” arXiv:2205.05086 [hep-th].
- Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Gauss Law and Axions,” arXiv:2212.04499 [hep-th].
- T. Vachaspati, L. Pogosian, and D. Steer, “Cosmic Strings,” Scholarpedia 10 no. 2, (2015) 31682, arXiv:1506.04039 [astro-ph.CO].
- D. B. Kaplan and A. Manohar, “Anomalous Vortices and Electromagnetism,” Nucl. Phys. B 302 (1988) 280–290.
- P. Agrawal, A. Hook, J. Huang, and G. Marques-Tavares, “Axion string signatures: a cosmological plasma collider,” JHEP 01 (2022) 103, arXiv:2010.15848 [hep-ph].
- A. Manohar, “Anomalous Vortices and Electromagnetism. 2.,” Phys. Lett. B 206 (1988) 276. [Erratum: Phys.Lett. 209, 543 (1988)].
- H. Fukuda, A. V. Manohar, H. Murayama, and O. Telem, “Axion strings are superconducting,” JHEP 06 (2021) 052, arXiv:2010.02763 [hep-ph].
- B. Carter and X. Martin, “Dynamic instability criterion for circular (Vorton) string loops,” Annals Phys. 227 (1993) 151–171, arXiv:hep-th/0306111.
- R. H. Brandenberger, B. Carter, A.-C. Davis, and M. Trodden, “Cosmic vortons and particle physics constraints,” Phys. Rev. D 54 (1996) 6059–6071, arXiv:hep-ph/9605382.
- C. J. A. P. Martins and E. P. S. Shellard, “Vorton formation,” Phys. Rev. D 57 (1998) 7155–7176, arXiv:hep-ph/9804378.
- C. J. A. P. Martins and E. P. S. Shellard, “Limits on cosmic chiral vortons,” Phys. Lett. B 445 (1998) 43–51, arXiv:hep-ph/9806480.
- B. Carter and A.-C. Davis, “Chiral vortons and cosmological constraints on particle physics,” Phys. Rev. D 61 (2000) 123501, arXiv:hep-ph/9910560.
- M. Ibe, S. Kobayashi, Y. Nakayama, and S. Shirai, “On Stability of Fermionic Superconducting Current in Cosmic String,” JHEP 05 (2021) 217, arXiv:2102.05412 [hep-ph].
- Y. Abe, Y. Hamada, K. Saji, and K. Yoshioka, “Quantum current dissipation in superconducting strings and vortons,” arXiv:2209.03223 [hep-ph].
- D. Gaiotto, Z. Komargodski, and N. Seiberg, “Time-reversal breaking in QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT, walls, and dualities in 2 + 1 dimensions,” JHEP 01 (2018) 110, arXiv:1708.06806 [hep-th].
- R. J. Danos and R. H. Brandenberger, “Canny Algorithm, Cosmic Strings and the Cosmic Microwave Background,” Int. J. Mod. Phys. D 19 (2010) 183–217, arXiv:0811.2004 [astro-ph].
- J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, “The number of cosmic string loops,” Phys. Rev. D 89 no. 2, (2014) 023512, arXiv:1309.6637 [astro-ph.CO].
- F. A. Jenet, G. B. Hobbs, W. van Straten, R. N. Manchester, M. Bailes, J. P. W. Verbiest, R. T. Edwards, A. W. Hotan, J. M. Sarkissian, and S. M. Ord, “Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects,” Astrophys. J. 653 (2006) 1571–1576, arXiv:astro-ph/0609013.
- R. Khatri and B. D. Wandelt, “Cosmic (super)string constraints from 21 cm radiation,” Phys. Rev. Lett. 100 (2008) 091302, arXiv:0801.4406 [astro-ph].
- W. E. East and J. Huang, “Dark photon vortex formation and dynamics,” JHEP 12 (2022) 089, arXiv:2206.12432 [hep-ph].
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019) 184, arXiv:1802.04790 [hep-th].
- F. Benini, C. Córdova, and P.-S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019) 118, arXiv:1803.09336 [hep-th].
- K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” arXiv:2204.09025 [hep-th].
- Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Time-reversal Symmetry,” arXiv:2208.04331 [hep-th].
- L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible Higher-Categorical Symmetries,” arXiv:2204.06564 [hep-th].
- G. Arias-Tamargo and D. Rodriguez-Gomez, “Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum,” arXiv:2204.07523 [hep-th].
- L. Bhardwaj, S. Schafer-Nameki, and J. Wu, “Universal Non-Invertible Symmetries,” Fortsch. Phys. 70 no. 11, (2022) 2200143, arXiv:2208.05973 [hep-th].
- T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, “Non-invertible Symmetries and Higher Representation Theory I,” arXiv:2208.05993 [hep-th].
- I. n. García Etxebarria, “Branes and Non-Invertible Symmetries,” Fortsch. Phys. 70 no. 11, (2022) 2200154, arXiv:2208.07508 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-Invertible Defects,” arXiv:2209.11062 [hep-th].
- R. Yokokura, “Non-invertible symmetries in axion electrodynamics,” arXiv:2212.05001 [hep-th].
- L. Bhardwaj, S. Schafer-Nameki, and A. Tiwari, “Unifying Constructions of Non-Invertible Symmetries,” arXiv:2212.06159 [hep-th].
- L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki, and A. Tiwari, “Non-Invertible Symmetry Webs,” arXiv:2212.06842 [hep-th].
- T. Bartsch, M. Bullimore, A. E. V. Ferrari, and J. Pearson, “Non-invertible Symmetries and Higher Representation Theory II,” arXiv:2212.07393 [hep-th].
- C. G. Callan, Jr. and J. A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B 250 (1985) 427–436.
- E. Witten and K. Yonekura, “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant,” in The Shoucheng Zhang Memorial Workshop. 9, 2019. arXiv:1909.08775 [hep-th].
- J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane charges in five-brane backgrounds,” JHEP 10 (2001) 005, arXiv:hep-th/0108152.
- M. G. Alford and J. March-Russell, “Discrete gauge theories,” Int. J. Mod. Phys. B 5 (1991) 2641–2674.
- M. M. Anber, S. Hong, and M. Son, “New anomalies, TQFTs, and confinement in bosonic chiral gauge theories,” JHEP 02 (2022) 062, arXiv:2109.03245 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.