Papers
Topics
Authors
Recent
2000 character limit reached

Deep reinforcement learning for the olfactory search POMDP: a quantitative benchmark (2302.00706v2)

Published 1 Feb 2023 in cs.RO, physics.bio-ph, and physics.flu-dyn

Abstract: The olfactory search POMDP (partially observable Markov decision process) is a sequential decision-making problem designed to mimic the task faced by insects searching for a source of odor in turbulence, and its solutions have applications to sniffer robots. As exact solutions are out of reach, the challenge consists in finding the best possible approximate solutions while keeping the computational cost reasonable. We provide a quantitative benchmarking of a solver based on deep reinforcement learning against traditional POMDP approximate solvers. We show that deep reinforcement learning is a competitive alternative to standard methods, in particular to generate lightweight policies suitable for robots.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.