Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Quantum-inspired classical algorithm for graph problems by Gaussian boson sampling (2302.00536v2)

Published 1 Feb 2023 in quant-ph

Abstract: We present a quantum-inspired classical algorithm that can be used for graph-theoretical problems, such as finding the densest $k$-subgraph and finding the maximum weight clique, which are proposed as applications of a Gaussian boson sampler. The main observation from Gaussian boson samplers is that a given graph's adjacency matrix to be encoded in a Gaussian boson sampler is nonnegative, which does not necessitate quantum interference. We first provide how to program a given graph problem into our efficient classical algorithm. We then numerically compare the performance of ideal and lossy Gaussian boson samplers, our quantum-inspired classical sampler, and the uniform sampler for finding the densest $k$-subgraph and finding the maximum weight clique and show that the advantage from Gaussian boson samplers is not significant in general. We finally discuss the potential advantage of a Gaussian boson sampler over the proposed sampler.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube