Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Quantum energy inequalities in integrable models with several particle species and bound states (2302.00063v2)

Published 25 Jan 2023 in math-ph, hep-th, and math.MP

Abstract: We investigate lower bounds to the time-smeared energy density, so-called quantum energy inequalities (QEI), in the class of integrable models of quantum field theory. Our main results are a state-independent QEI for models with constant scattering function and a QEI at one-particle level for generic models. In the latter case, we classify the possible form of the stress-energy tensor from first principles and establish a link between the existence of QEIs and the large-rapidity asymptotics of the two-particle form factor of the energy density. Concrete examples include the Bullough-Dodd, the Federbush, and the $O(n)$-nonlinear sigma models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Elcio Abdalla, Maria Cristina Batoni Abdalla and Klaus Dieter Rothe “Non-Perturbative Methods in 2 Dimensional Quantum Field Theory.” Singapore: World Scientific Publishing Company, 2001
  2. P. G. Appleby, B. R. Duffy and R. W. Ogden “On the Classification of Isotropic Tensors” In Glasgow Mathematical Journal 29.2, 1987, pp. 185–196 DOI: 10.1017/S0017089500006832
  3. A. E. Arinshtein, V. A. Fateyev and A. B. Zamolodchikov “Quantum S-matrix of the (1 + 1)-Dimensional Todd Chain” In Physics Letters B 87.4, 1979, pp. 389–392 DOI: 10.1016/0370-2693(79)90561-6
  4. “Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories” In Communications in Mathematical Physics 354.3, 2017, pp. 913–956 DOI: 10.1007/s00220-017-2891-0
  5. “Exact Form Factors in Integrable Quantum Field Theories: The Sine-Gordon Model” In Nuclear Physics B 538.3, 1999, pp. 535–586
  6. “Higher Transcendental Functions - Volume 1” McGraw-Hill Book Company, Inc., 1953
  7. “Characterization of Local Observables in Integrable Quantum Field Theories” In Communications in Mathematical Physics 337.3 Springer Science and Business Media LLC, 2015, pp. 1199–1240 DOI: 10.1007/s00220-015-2294-z
  8. “Negative Energy Densities in Integrable Quantum Field Theories at One-Particle Level” In Physical Review D 93.6 American Physical Society (APS), 2016 DOI: 10.1103/physrevd.93.065001
  9. “Fermionic Integrable Models and Graded Borchers Triples” In arXiv:2112.14686 [math-ph], 2021 arXiv:2112.14686 [math-ph]
  10. Henning Bostelmann, Daniela Cadamuro and Christopher J. Fewster “Quantum Energy Inequality for the Massive Ising Model” In Physical Review D 88.2 American Physical Society, 2013, pp. 025019 DOI: 10.1103/PhysRevD.88.025019
  11. Henning Bostelmann and Christopher J. Fewster “Quantum Inequalities from Operator Product Expansions” In Communications in Mathematical Physics 292.3, 2009, pp. 761 DOI: 10.1007/s00220-009-0853-x
  12. H. Babujian, A. Foerster and M. Karowski “Exact Form Factors in Integrable Quantum Field Theories: The Scaling Z(N)-Ising Model” In Nuclear Physics B 736.3, 2006, pp. 169–198 DOI: 10.1016/j.nuclphysb.2005.12.001
  13. H. M. Babujian, A. Foerster and M. Karowski “The Form Factor Program: A Review and New Results, the Nested SU(N) off-Shell Bethe Ansatz and the 1/N Expansion” In Theoretical and Mathematical Physics 155.1, 2008, pp. 512–522 DOI: 10.1007/s11232-008-0042-7
  14. Hrachya M. Babujian, Angela Foerster and Michael Karowski “Exact Form Factors of the SU(N) Gross–Neveu Model and 1/N Expansion” In Nuclear Physics B 825.3, 2010, pp. 396–425 DOI: 10.1016/j.nuclphysb.2009.09.023
  15. H. M. Babujian, A. Foerster and M. Karowski “Exact Form Factors of the O(N) Sigma-Model” In Journal of High Energy Physics, 2013, pp. 89–143 DOI: 10.1007/JHEP11(2013)089
  16. Hrachya M. Babujian, Angela Foerster and Michael Karowski “Asymptotic Factorization of N-Particle SU(N) Form Factors” In Journal of High Energy Physics 2021.6, 2021, pp. 32 DOI: 10.1007/JHEP06(2021)032
  17. “Exact Form Factors in Integrable Quantum Field Theories: The Sine-Gordon Model (II)” In Nuclear Physics B 620.3, 2002, pp. 407–455 DOI: 10.1016/S0550-3213(01)00551-X
  18. Henning Bostelmann, Gandalf Lechner and Gerardo Morsella “Scaling Limits of Integrable Quantum Field Theories” In Reviews in Mathematical Physics 23.10 World Scientific Publishing Co., 2011, pp. 1115–1156 DOI: 10.1142/S0129055X11004539
  19. L. Castillejo, R. H. Dalitz and F. J. Dyson “Low’s Scattering Equation for the Charged and Neutral Scalar Theories” In Physical Review 101.1 American Physical Society, 1956, pp. 453–458 DOI: 10.1103/PhysRev.101.453
  20. “Form Factors from Free Fermionic Fock Fields, the Federbush Model” In Nuclear Physics B 618.3, 2001, pp. 437–464 DOI: 10.1016/S0550-3213(01)00462-X
  21. “Wedge-Local Fields in Integrable Models with Bound States” In Communications in Mathematical Physics 340.2, 2015, pp. 661–697 DOI: 10.1007/s00220-015-2448-z
  22. S. P. Dawson “A Quantum Weak Energy Inequality for the Dirac Field in Two-Dimensional Flat Spacetime” In Classical and Quantum Gravity 23.1, 2006, pp. 287–293 DOI: 10.1088/0264-9381/23/1/014
  23. G. Delfino, P. Simonetti and J. L. Cardy “Asymptotic Factorisation of Form Factors in Two-Dimensional Quantum Field Theory” In Physics Letters B 387.2, 1996, pp. 327–333 DOI: 10.1016/0370-2693(96)01035-0
  24. C. J. Fewster and S. P. Eveson “Bounds on Negative Energy Densities in Flat Spacetime” In Physical Review D 58.8, 1998 DOI: 10.1103/PhysRevD.58.084010
  25. P. Federbush “A Two-Dimensional Relativistic Field Theory” In Physical Review 121.4, 1961, pp. 1247–1249 DOI: 10.1103/PhysRev.121.1247
  26. Christopher J. Fewster “Lectures on Quantum Energy Inequalities” In arXiv:1208.5399 [gr-qc, math-ph], 2012 arXiv:1208.5399 [gr-qc, math-ph]
  27. Christopher J. Fewster and Stefan Hollands “Quantum Energy Inequalities in Two-Dimensional Conformal Field Theory” In Reviews in Mathematical Physics 17.05 World Scientific Pub Co Pte Lt, 2005, pp. 577–612 DOI: 10.1142/s0129055x05002406
  28. A. Fring, G. Mussardo and P. Simonetti “Form Factors for Integrable Lagrangian Field Theories, the Sinh-Gordon Model” In Nuclear Physics B 393, 1993, pp. 413–441 DOI: 10.1016/0550-3213(93)90252-k
  29. L. H. Ford “Quantum Coherence Effects and the Second Law of Thermodynamics” In Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 364.1717 Royal Society, 1978, pp. 227–236 DOI: 10.1098/rspa.1978.0197
  30. Th. Jolicoeur and J. C. Niel “An Analytical Evaluation for the Mass Gap of the Non-Linear Sigma Model” In Nuclear Physics B 300, 1988, pp. 517–530 DOI: 10.1016/0550-3213(88)90610-4
  31. “On the Uniqueness of a Purely Elastic S-matrix in (1+1) Dimensions” In Physics Letters B 67.3, 1977, pp. 321–322 DOI: 10.1016/0370-2693(77)90382-3
  32. Tosio Kato “Perturbation Theory for Linear Operators”, Classics in Mathematics Springer, 1995
  33. “On the Operator Content of the Sinh-Gordon Model” In Physics Letters B 311.1, 1993, pp. 193–201 DOI: 10.1016/0370-2693(93)90554-U
  34. “Energy Conditions in General Relativity and Quantum Field Theory” In Classical and Quantum Gravity 37.19, 2020, pp. 193001 DOI: 10.1088/1361-6382/ab8fcf
  35. “Exact Form Factors in (1 + 1)-Dimensional Field Theoretic Models with Soliton Behaviour” In Nuclear Physics B 139.4, 1978, pp. 455–476 DOI: 10.1016/0550-3213(78)90362-0
  36. M. Yu Lashkevich “Sectors of Mutually Local Fields in Integrable Models of Quantum Field Theory” In arXiv:hep-th/9406118, 1994 arXiv:hep-th/9406118
  37. Gandalf Lechner “Algebraic Constructive Quantum Field Theory: Integrable Models and Deformation Techniques” arXiv, 2015 DOI: 10.48550/arXiv.1503.03822
  38. “Fock Representations of Quantum Fields with Generalized Statistic” In Communications in Mathematical Physics 169.3, 1995, pp. 635–652 DOI: 10.1007/BF02099316
  39. “Towards an Operator-Algebraic Construction of Integrable Global Gauge Theories” In Annales Henri Poincaré 15.4, 2014, pp. 645–678 DOI: 10.1007/s00023-013-0260-x
  40. Jan Mandrysch “Energy Inequalities in Integrable Quantum Field Theory”, 2023 URL: nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-873564
  41. Jan Mandrysch “Numerical Results on Quantum Energy Inequalities in Integrable Models at the Two-Particle Level” arXiv, 2023 arXiv:2312.14960 [gr-qc, physics:hep-th]
  42. “NIST Digital Library of Mathematical Functions”, http://dlmf.nist.gov/, Release 1.1.7 of 2022-10-15
  43. K. R. Parthasarathy “Eigenvalues of Matrix-Valued Analytic Maps” In Journal of the Australian Mathematical Society 26.2, 1978, pp. 179–197 DOI: 10.1017/S144678870001168X
  44. “Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness” Elsevier Science, 1975
  45. S. N. M. Ruijsenaars “Integrable Quantum Field Theories and Bogoliubov Transformations” In Annals of Physics 132.2, 1981, pp. 328–382 DOI: 10.1016/0003-4916(81)90071-3
  46. S. N. M. Ruijsenaars “Scattering Theory for the Federbush, Massless Thirring and Continuum Ising Models” In Journal of Functional Analysis 48.2, 1982, pp. 135–171 DOI: 10.1016/0022-1236(82)90065-9
  47. “Current Definition and a Generalized Federbush Model” In Annals of Physics 115.1, 1978, pp. 136–152 DOI: 10.1016/0003-4916(78)90178-1
  48. F. A. Smirnov “Form Factors In Completely Integrable Models Of Quantum Field Theory” World Scientific, 1992
  49. B. Schroer, T.T. Truong and P. Weisz “Towards an Explicit Construction of the Sine-Gordon Field Theory” In Physics Letters B 63.4, 1976, pp. 422–424 DOI: 10.1016/0370-2693(76)90386-5
  50. Yoh Tanimoto “Construction of Two-Dimensional Quantum Field Models through Longo-Witten Endomorphisms” In Forum of Mathematics, Sigma 2.e7 Cambridge University Press, 2014 DOI: 10.1017/fms.2014.3
  51. A. B. Zamolodchikov “Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory” In Journal of Experimental and Theoretical Physics Letters 43, 1986, pp. 730–732
  52. Alexander B. Zamolodchikov and Alexey B. Zamolodchikov “Relativistic Factorized S-matrix in Two Dimensions Having O(N) Isotopic Symmetry” In Nuclear Physics B 133.3, 1978, pp. 525–535 DOI: 10.1016/0550-3213(78)90239-0
  53. Alexander B. Zamolodchikov and Alexey B. Zamolodchikov “Factorized S-matrices in Two Dimensions as the Exact Solutions of Certain Relativistic Quantum Field Theory Models” In Annals of Physics 120.2, 1979, pp. 253–291 DOI: 10.1016/0003-4916(79)90391-9
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube