Papers
Topics
Authors
Recent
2000 character limit reached

Straight-Through meets Sparse Recovery: the Support Exploration Algorithm (2301.13584v3)

Published 31 Jan 2023 in cs.LG, math.OC, math.ST, stat.TH, and cs.AI

Abstract: The {\it straight-through estimator} (STE) is commonly used to optimize quantized neural networks, yet its contexts of effective performance are still unclear despite empirical successes.To make a step forward in this comprehension, we apply STE to a well-understood problem: {\it sparse support recovery}. We introduce the {\it Support Exploration Algorithm} (SEA), a novel algorithm promoting sparsity, and we analyze its performance in support recovery (a.k.a. model selection) problems. SEA explores more supports than the state-of-the-art, leading to superior performance in experiments, especially when the columns of $A$ are strongly coherent.The theoretical analysis considers recovery guarantees when the linear measurements matrix $A$ satisfies the {\it Restricted Isometry Property} (RIP).The sufficient conditions of recovery are comparable but more stringent than those of the state-of-the-art in sparse support recovery. Their significance lies mainly in their applicability to an instance of the STE.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com