Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Estimation of Gaussian Process-based Deep State-Space Models (2301.12528v2)

Published 29 Jan 2023 in cs.LG

Abstract: We consider the problem of sequential estimation of the unknowns of state-space and deep state-space models that include estimation of functions and latent processes of the models. The proposed approach relies on Gaussian and deep Gaussian processes that are implemented via random feature-based Gaussian processes. In these models, we have two sets of unknowns, highly nonlinear unknowns (the values of the latent processes) and conditionally linear unknowns (the constant parameters of the random feature-based Gaussian processes). We present a method based on particle filtering where the parameters of the random feature-based Gaussian processes are integrated out in obtaining the predictive density of the states and do not need particles. We also propose an ensemble version of the method, with each member of the ensemble having its own set of features. With several experiments, we show that the method can track the latent processes up to a scale and rotation.

Citations (10)

Summary

We haven't generated a summary for this paper yet.