Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Bayes learning of stochastic differential equations (1702.05390v1)

Published 17 Feb 2017 in physics.data-an and stat.ML

Abstract: We introduce a nonparametric approach for estimating drift and diffusion functions in systems of stochastic differential equations from observations of the state vector. Gaussian processes are used as flexible models for these functions and estimates are calculated directly from dense data sets using Gaussian process regression. We also develop an approximate expectation maximization algorithm to deal with the unobserved, latent dynamics between sparse observations. The posterior over states is approximated by a piecewise linearized process of the Ornstein-Uhlenbeck type and the maximum a posteriori estimation of the drift is facilitated by a sparse Gaussian process approximation.

Citations (40)

Summary

We haven't generated a summary for this paper yet.