Deep Bayesian Filter for Bayes-faithful Data Assimilation (2405.18674v2)
Abstract: State estimation for nonlinear state space models (SSMs) is a challenging task. Existing assimilation methodologies predominantly assume Gaussian posteriors on physical space, where true posteriors become inevitably non-Gaussian. We propose Deep Bayesian Filtering (DBF) for data assimilation on nonlinear SSMs. DBF constructs new latent variables $h_t$ in addition to the original physical variables $z_t$ and assimilates observations $o_t$. By (i) constraining the state transition on the new latent space to be linear and (ii) learning a Gaussian inverse observation operator $r(h_t|o_t)$, posteriors remain Gaussian. Notably, the structured design of test distributions enables an analytical formula for the recursive computation, eliminating the accumulation of Monte Carlo sampling errors across time steps. DBF trains the Gaussian inverse observation operators $r(h_t|o_t)$ and other latent SSM parameters (e.g., dynamics matrix) by maximizing the evidence lower bound. Experiments demonstrate that DBF outperforms model-based approaches and latent assimilation methods in tasks where the true posterior distribution on physical space is significantly non-Gaussian.
- Seismic data assimilation with an imperfect model. Computational Geosciences, 24(2):889–905, 2020. Marine Environmental Monitoring and Prediction.
- Deep learning for day forecasts from sparse observations. ArXiv, abs/2306.06079, 2023. URL https://api.semanticscholar.org/CorpusID:259129311.
- A particle filter based visual object tracking: A systematic review of current trends and research challenges. International Journal of Advanced Computer Science and Applications, 14(11), 2023. doi: 10.14569/IJACSA.2023.01411131. URL http://dx.doi.org/10.14569/IJACSA.2023.01411131.
- Forecasting sequential data using consistent koopman autoencoders. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 475–485. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/azencot20a.html.
- A multi-model ensemble kalman filter for data assimilation and forecasting. Journal of Advances in Modeling Earth Systems, 15(1):e2022MS003123, 2023. doi: https://doi.org/10.1029/2022MS003123. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003123. e2022MS003123 2022MS003123.
- Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129(3):420–436, March 2001. ISSN 0027-0644, 1520-0493. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2. URL http://journals.ametsoc.org/doi/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.
- Nonlinear filters with log-homotopy. In Oliver E. Drummond and Richard D. Teichgraeber, editors, Signal and Data Processing of Small Targets 2007, volume 6699, page 669918. International Society for Optics and Photonics, SPIE, 2007. doi: 10.1117/12.725684. URL https://doi.org/10.1117/12.725684.
- Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143–10162, 1994. ISSN 2156-2202. doi: 10.1029/94JC00572. URL https://onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/94JC00572.
- Variational Data Assimilation with a Learned Inverse Observation Operator. In Proceedings of the 38th International Conference on Machine Learning, pages 3449–3458. PMLR, July 2021. URL https://proceedings.mlr.press/v139/frerix21a.html. ISSN: 2640-3498.
- Dynamical variational autoencoders: A comprehensive review. Foundations and Trends® in Machine Learning, 15(1-2):1–175, 2021. ISSN 1935-8237. doi: 10.1561/2200000089. URL http://dx.doi.org/10.1561/2200000089.
- Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
- Efficiently modeling long sequences with structured state spaces. In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=uYLFoz1vlAC.
- Chih-Chi Hu and Peter Jan van Leeuwen. A particle flow filter for high-dimensional system applications. Quarterly Journal of the Royal Meteorological Society, 147(737):2352–2374, 2021. doi: https://doi.org/10.1002/qj.4028. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4028.
- Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter. Physica D: Nonlinear Phenomena, 230(1):112–126, 2007. ISSN 0167-2789. doi: https://doi.org/10.1016/j.physd.2006.11.008. URL https://www.sciencedirect.com/science/article/pii/S0167278906004647. Data Assimilation.
- R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https://doi.org/10.1115/1.3662552.
- B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy of Sciences, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315. URL https://www.pnas.org/doi/abs/10.1073/pnas.17.5.315.
- Validation of a hybrid optimal interpolation and kalman filter scheme for sea surface temperature assimilation. Journal of Marine Systems, 65(1):122–133, 2007. ISSN 0924-7963. doi: https://doi.org/10.1016/j.jmarsys.2005.09.013. URL https://www.sciencedirect.com/science/article/pii/S0924796306002880. Marine Environmental Monitoring and Prediction.
- PDE-Refiner: Achieving Accurate Long Rollouts with Temporal Neural PDE Solvers. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=Qv6468llWS.
- Andrew C. Lorenc. Modelling of error covariances by 4d-var data assimilation. Quarterly Journal of the Royal Meteorological Society, 129(595):3167–3182, 2003. doi: https://doi.org/10.1256/qj.02.131. URL https://rmets.onlinelibrary.wiley.com/doi/abs/10.1256/qj.02.131.
- E.N. Lorenz. Predictability: a problem partly solved. PhD thesis, Shinfield Park, Reading, 1995 1995.
- Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications, 9:4950, November 2018. doi: 10.1038/s41467-018-07210-0.
- Kalmannet: Neural network aided kalman filtering for partially known dynamics. IEEE Transactions on Signal Processing, 70:1532–1547, 2022. doi: 10.1109/TSP.2022.3158588.
- Learning koopman invariant subspaces for dynamic mode decomposition. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf.
- Deep latent state space models for time-series generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 42625–42643. PMLR, 2023. URL https://proceedings.mlr.press/v202/zhou23i.html.