Revealing a deep connection between factorization and saturation: New insight into modeling high-energy proton-proton and nucleus-nucleus scattering in the EPOS4 framework (2301.12517v2)
Abstract: It is known that multiple partonic scatterings in high-energy proton-proton ($pp$) collisions must happen in parallel. However, a rigorous parallel scattering formalism, taking energy sharing properly into account, fails to reproduce factorization, which on the other hand is the basis of almost all $pp$ event generators. In addition, binary scaling in nuclear scatterings is badly violated. These problems are usually solved'' by simply not considering strictly parallel scatterings, which is not a solution. I will report on new ideas (leading to EPOS4), which allow recovering perfectly factorization, and also binary scaling in $AA$ collisions, in a rigorous unbiased parallel scattering formalism. In this new approach, dynamical saturation scales play a crucial role, and this seems to be the missing piece needed to reconcile parallel scattering with factorization. From a practical point of view, one can compute within the EPOS4 framework parton distribution functions (EPOS PDFs) and use them to compute inclusive $pp$ cross sections. So, for the first time, one may compute inclusive jet production (for heavy or light flavors) at very high transverse momentum ($p_{t}$) and at the same time in the same formalism study flow effects at low $p_{t}$ in high-multiplicity $pp$ events, making EPOS4 a full-scalegeneral purpose event generator''. I discuss applications, essentially multiplicity dependencies (of particle ratios, mean $p_{t}$, charm production) which are very strongly affected by the saturation issues discussed in this paper.
- D. Gross and F. Wilczek, Physical Review Letters 30, 1343 (1973).
- H. Politzer, Physical Review Letters 30, 1346 (1973).
- in Perturbative Quantum Chromodynamics, edited by A.H. Mueller, World Scientific, Singapore (1989).
- in QCD and Collider Physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (1996).
- CMS, V. Khachatryan et al., JHEP 09, 091 (2010), 1009.4122.
- Sov. J. Nucl. Phys. 15, 438 (1972).
- G. Altarelli and G. Parisi, Nuclear Physics B. 126, 298 (1977).
- Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
- V. N. Gribov, Zh. Eksp. Teor. Fiz. 53, 654 (1967).
- V. N. Gribov, Sov. Phys. JETP 29, 483 (1969).
- Yad. Fiz. 18, 595 (1973).
- M. Braun, Yad. Fiz. (Rus) 52, 257 (1990).
- Sov.J.Nucl.Phys. 55, 903 (1992).
- K. Werner, Phys. Rep. 232, 87 (1993).
- Phys. Rep. 350, 93 (2001), hep-ph/0007198.
- Computer Physics Communications 178, 852 (2008).
- M. Baehr et al., The European Physical Journal C 58, 639 (2008).
- S. Schumann and F. Krauss, Journal of High Energy Physics 2008, 038 (2008).
- Phys. Rep. 100, 1 (1983).
- L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994), hep-ph/9309289.
- L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352 (1994), hep-ph/9311205.
- Phys. Rev. D52, 3809 (1995), hep-ph/9505320.
- Y. V. Kovchegov, Phys. Rev. D54, 5463 (1996), hep-ph/9605446.
- Y. V. Kovchegov, Phys. Rev. D55, 5445 (1997), hep-ph/9701229.
- Phys. Rev. C56, 1084 (1997), hep-ph/9704201.
- Phys. Rev. D55, 5414 (1997), hep-ph/9606337.
- Nucl. Phys. B504, 415 (1997), hep-ph/9701284.
- Nucl. Phys. B529, 451 (1998), hep-ph/9802440.
- A. Krasnitz and R. Venugopalan, Nucl. Phys. B557, 237 (1999), hep-ph/9809433.
- Phys. Rev. D59, 034007 (1999), hep-ph/9807462.
- Phys. Rev. D59, 014015 (1998), hep-ph/9709432.
- Phys. Rev. D59, 014014 (1998), hep-ph/9706377.
- JHEP 10, 134 (2018), arXiv:1806.10820.
- Phys. Lett. B 835, 137571 (2022), arXiv:2205.11170.
- K. Werner and B. Guiot, Phys. Rev. C 108, 034904 (2023), arXiv:2306.02396.
- K. Werner, (2023), arXiv:2310.09380.
- K. Werner, (2023), arXiv:2306.10277.
- R. E. Cutcosky, J. Math. Phys. 1, 429 (1960).
- Physical Review C 92 (2015).
- Phys. Rev. C 74, 044902 (2006), hep-ph/0506232.
- J. Phys. Conf. Ser. 458, 012020 (2013).
- T. Pierog and K. Werner, Acta Phys. Polon. Supp. 8, 1031 (2015).
- S. Dulat et al., Physical Review D 93 (2016).
- ZEUS, M. Derrick et al., Z. Phys. C72, 399 (1996), hep-ex/9607002.
- Z. Phys. C63, 377 (1994).
- Nucl. Phys. B470, 3 (1996).
- Nucl. Phys. B485, 3 (1996).
- ATLAS, M. Aaboud et al., JHEP 05, 195 (2018), arXiv:1711.02692.
- K. Werner, Phys. Rev. Lett. 98, 152301 (2007), arXiv:0704.1270.
- Phys. Rev. C 82, 044904 (2010), arXiv:1004.0805.
- Phys. Rev. C 89, 064903 (2014), arXiv:1312.1233.
- S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998), nucl-th/9803035.
- M. Bleicher et al., J. Phys. G25, 1859 (1999), hep-ph/9909407.
- ALICE, J. Adam et al., Nature Phys. 13, 535 (2017), arXiv:1606.07424.
- ALICE, B. B. Abelev et al., Phys. Lett. B 728, 216 (2014), arXiv:1307.5543, [Erratum: Phys.Lett.B 734, 409–410 (2014)].
- ALICE, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), arXiv:1303.0737.
- ALICE, B. B. Abelev et al., Phys. Rev. Lett. 111, 222301 (2013), arXiv:1307.5530.
- ALICE, J. Adam et al., Eur. Phys. J. C 75, 226 (2015), arXiv:1504.00024.
- ALICE, J. Adam et al., JHEP 09, 148 (2015), arXiv:1505.00664.
- M. Cacciari et al., JHEP 10, 137 (2012), 1205.6344.
- ALICE, B. Abelev et al., JHEP 01, 128 (2012), 1111.1553.
- ALICE, S. Acharya et al., Phys. Rev. Lett. 127, 202301 (2021), arXiv:2011.06078.
- ALICE, S. Acharya et al., JHEP 10, 159 (2021), arXiv:2105.05616.
- LHCb, R. Aaij et al., JHEP 06, 141 (2012), arXiv:1205.0975, [Addendum: JHEP 03, 108 (2014)].
- Physics Letters B 91, 253 (1980).
- R. Gavai et al., Int. J. Mod. Phys. A 10, 3043 (1995), hep-ph/9502270.
- Y.-Q. Ma and R. Vogt, Phys. Rev. D 94, 114029 (2016).
- ATLAS, G. Aad et al., Eur. Phys. J. C 76, 283 (2016), arXiv:1512.03657.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.