Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient Enumeration of Markov Equivalent DAGs (2301.12212v2)

Published 28 Jan 2023 in cs.AI, cs.DS, and cs.LG

Abstract: Enumerating the directed acyclic graphs (DAGs) of a Markov equivalence class (MEC) is an important primitive in causal analysis. The central resource from the perspective of computational complexity is the delay, that is, the time an algorithm that lists all members of the class requires between two consecutive outputs. Commonly used algorithms for this task utilize the rules proposed by Meek (1995) or the transformational characterization by Chickering (1995), both resulting in superlinear delay. In this paper, we present the first linear-time delay algorithm. On the theoretical side, we show that our algorithm can be generalized to enumerate DAGs represented by models that incorporate background knowledge, such as MPDAGs; on the practical side, we provide an efficient implementation and evaluate it in a series of experiments. Complementary to the linear-time delay algorithm, we also provide intriguing insights into Markov equivalence itself: All members of an MEC can be enumerated such that two successive DAGs have structural Hamming distance at most three.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube