Semiclassical Einstein equations from holography and boundary dynamics (2301.12170v2)
Abstract: In this paper, we consider how to formulate semiclassical problems in the context of the AdS/CFT correspondence, based on the proposal of Compere and Marolf. Our prescription involves the effective action with self-action term for boundary dynamical fields, which can be viewed as imposing mixed boundary conditions for the gravity dual. We derive the semiclassical Einstein equations sourced by boundary CFT stress-energy tensor. Analyzing perturbations of the holographic semiclassical Einstein equations, we find a universal parameter $\gamma_d$ which controls the contribution from boundary CFTs and specifies dynamics on the AdS boundary. As a simple example, we examine the semiclassical Einstein equations in $3$-dimensions with $4$-dimensional AdS gravity dual, and show that the boundary BTZ black hole with vanishing expectation value of the stress-energy tensor becomes unstable due to the backreaction from quantum stress-energy tensor when the parameter $\gamma_d$ exceeds a certain critical value.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231-252 (1998) [arXiv:hep-th/9711200 [hep-th]].
- S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105-114 (1998) [arXiv:hep-th/9802109 [hep-th]].
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253-291 (1998) [arXiv:hep-th/9802150 [hep-th]].
- E. Witten, “Multitrace operators, boundary conditions, and AdS / CFT correspondence,” [arXiv:hep-th/0112258 [hep-th]].
- G. Compere and D. Marolf, “Setting the boundary free in AdS/CFT,” Class. Quant. Grav. 25, 195014 (2008) [arXiv:0805.1902 [hep-th]].
- C. Ecker, W. van der Schee, D. Mateos and J. Casalderrey-Solana, “Holographic evolution with dynamical boundary gravity,” JHEP 03, 137 (2022) [arXiv:2109.10355 [hep-th]].
- M. Natsuume and T. Okamura, “Holographic Meissner effect,” Phys. Rev. D 106, no.8, 086005 (2022) [arXiv:2207.07182 [hep-th]].
- Y. Ahn, M. Baggioli, K. B. Huh, H. S. Jeong, K. Y. Kim and Y. W. Sun, “Holography and magnetohydrodynamics with dynamical gauge fields,” JHEP 02, 012 (2023) doi:10.1007/JHEP02(2023)012 [arXiv:2211.01760 [hep-th]].
- C. Ecker, A. Mukhopadhyay, F. Preis, A. Rebhan and A. Soloviev, “Time evolution of a toy semiholographic glasma,” JHEP 08, 074 (2018) doi:10.1007/JHEP08(2018)074 [arXiv:1806.01850 [hep-th]].
- K. Maeda, M. Natsuume and T. Okamura, “On two pieces of folklore in the AdS/CFT duality,” Phys. Rev. D 82, 046002 (2010) [arXiv:1005.2431 [hep-th]].
- O. Domenech, M. Montull, A. Pomarol, A. Salvio and P. J. Silva, “Emergent Gauge Fields in Holographic Superconductors,” JHEP 08, 033 (2010) [arXiv:1005.1776 [hep-th]].
- K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19, 5849-5876 (2002) [arXiv:hep-th/0209067 [hep-th]].
- H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Prog. Theor. Phys. Suppl. 78, 1-166 (1984).
- A. Ishibashi and R. M. Wald, “Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time,” Class. Quant. Grav. 21, 2981-3014 (2004) [arXiv:hep-th/0402184 [hep-th]].
- M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69, 1849-1851 (1992) [arXiv:hep-th/9204099 [hep-th]].
- S. de Haro, S. N. Solodukhin and K. Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence,” Commun. Math. Phys. 217, 595-622 (2001) [arXiv:hep-th/0002230 [hep-th]].
- P. Breitenlohner and D. Z. Freedman, “Stability in Gauged Extended Supergravity,” Annals Phys. 144, 249 (1982).
- P. Breitenlohner and D. Z. Freedman, “Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity,” Phys. Lett. B 115, 197-201 (1982).
- C. Martinez and J. Zanelli, “Conformally dressed black hole in (2+1)-dimensions,” Phys. Rev. D 54, 3830-3833 (1996) [arXiv:gr-qc/9604021 [gr-qc]].
- L. h. Liu and B. Wang, “Stability of BTZ black strings,” Phys. Rev. D 78, 064001 (2008) [arXiv:0803.0455 [hep-th]].
- D. Marolf and J. E. Santos, “Phases of Holographic Hawking Radiation on spatially compact spacetimes,” JHEP 10, 250 (2019) [arXiv:1906.07681 [hep-th]].
- A. R. Steif, “The Quantum stress tensor in the three-dimensional black hole,” Phys. Rev. D 49, 585-589 (1994) [arXiv:gr-qc/9308032 [gr-qc]].
- K. Shiraishi and T. Maki, “Vacuum polarization around a three-dimensional black hole,” Class. Quant. Grav. 11, 695-700 (1994) [arXiv:1505.03958 [gr-qc]].
- K. Shiraishi and T. Maki, “Quantum fluctuation of stress tensor and black holes in three dimensions,” Phys. Rev. D 49, 5286-5294 (1994) [arXiv:1804.07872 [gr-qc]].
- G. Lifschytz and M. Ortiz, “Scalar field quantization on the (2+1)-dimensional black hole background,” Phys. Rev. D 49, 1929-1943 (1994) [arXiv:gr-qc/9310008 [gr-qc]].
- V. E. Hubeny, D. Marolf and M. Rangamani, “Hawking radiation from AdS black holes,” Class. Quant. Grav. 27, 095018 (2010) [arXiv:0911.4144 [hep-th]].
- V. E. Hubeny, D. Marolf and M. Rangamani, “Hawking radiation in large N strongly-coupled field theories,” Class. Quant. Grav. 27, 095015 (2010) [arXiv:0908.2270 [hep-th]].
- R. Gregory and R. Laflamme, “Black strings and p-branes are unstable,” Phys. Rev. Lett. 70, 2837-2840 (1993) [arXiv:hep-th/9301052 [hep-th]].
- G. T. Horowitz, J. E. Santos and B. Way, “Evidence for an Electrifying Violation of Cosmic Censorship,” Class. Quant. Grav. 33, no.19, 195007 (2016) [arXiv:1604.06465 [hep-th]].
- G. T. Horowitz and D. Wang, “Gravitational Corner Conditions in Holography,” JHEP 01, 155 (2020) [arXiv:1909.11703 [hep-th]].
- R. Emparan, D. Licht, R. Suzuki, M. Tomašević and B. Way, “Black tsunamis and naked singularities in AdS,” JHEP 02, 090 (2022) [arXiv:2112.07967 [hep-th]].
- C. G. Callan, Jr., S. B. Giddings, J. A. Harvey and A. Strominger, “Evanescent black holes,” Phys. Rev. D 45, no.4, R1005 (1992) [arXiv:hep-th/9111056 [hep-th]].
- N. Graham and K. D. Olum, “Achronal averaged null energy condition,” Phys. Rev. D 76, 064001 (2007) [arXiv:0705.3193 [gr-qc]].
- D. Urban and K. D. Olum, “Averaged null energy condition violation in a conformally flat spacetime,” Phys. Rev. D 81, 024039 (2010) [arXiv:0910.5925 [gr-qc]].
- A. Ishibashi, K. Maeda and E. Mefford, “Achronal averaged null energy condition, weak cosmic censorship, and AdS/CFT duality,” Phys. Rev. D 100, no.6, 066008 (2019) [arXiv:1903.11806 [hep-th]].
- T. Takayanagi, “Holographic Dual of BCFT,” Phys. Rev. Lett. 107, 101602 (2011) [arXiv:1105.5165 [hep-th]].
- K. Izumi, T. Shiromizu, K. Suzuki, T. Takayanagi and N. Tanahashi, “Brane dynamics of holographic BCFTs,” JHEP 10, 050 (2022) [arXiv:2205.15500 [hep-th]].
- T. Shiromizu, K. i. Maeda and M. Sasaki, “The Einstein equation on the 3-brane world,” Phys. Rev. D 62, 024012 (2000) [arXiv:gr-qc/9910076 [gr-qc]].
- V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208, 413-428 (1999) [arXiv:hep-th/9902121 [hep-th]].
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.