Papers
Topics
Authors
Recent
2000 character limit reached

Sampling without replacement from a high-dimensional finite population

Published 27 Jan 2023 in math.ST and stat.TH | (2301.11718v1)

Abstract: It is well known that most of the existing theoretical results in statistics are based on the assumption that the sample is generated with replacement from an infinite population. However, in practice, available samples are almost always collected without replacement. If the population is a finite set of real numbers, whether we can still safely use the results from samples drawn without replacement becomes an important problem. In this paper, we focus on the eigenvalues of high-dimensional sample covariance matrices generated without replacement from finite populations. Specifically, we derive the Tracy-Widom laws for their largest eigenvalues and apply these results to parallel analysis. We provide new insight into the permutation methods proposed by Buja and Eyuboglu in [Multivar Behav Res. 27(4) (1992) 509--540]. Simulation and real data studies are conducted to demonstrate our results.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.