Papers
Topics
Authors
Recent
2000 character limit reached

Exceptional Points in the Baxter-Fendley Free Parafermion Model (2301.11031v4)

Published 26 Jan 2023 in cond-mat.stat-mech and quant-ph

Abstract: Certain spin chains, such as the quantum Ising chain, have free fermion spectra which can be expressed as the sum of decoupled two-level fermionic systems. Free parafermions are a simple generalisation of this idea to $Z(N)$-symmetric clock models. In 1989 Baxter discovered a non-Hermitian but $PT$-symmetric model directly generalising the Ising chain, which was much later recognised by Fendley to be a free parafermion spectrum. By extending the model's magnetic field parameter to the complex plane, it is shown that a series of exceptional points emerges, where the quasienergies defining the free spectrum become degenerate. An analytic expression for the locations of these points is derived, and various numerical investigations are performed. These exceptional points also exist in the Ising chain with a complex transverse field. Although the model is not in general $PT$-symmetric at these exceptional points, their proximity can have a profound impact on the model on the $PT$-symmetric real line. Furthermore, in certain cases of the model an exceptional point may appear on the real line (with negative field).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.